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Abstract

Results of research on decompositions of reversible circuits into blocks are
presented where each block is constructed from one kind of gates. The
main contribution of this paper consists in discovering that there exist
more decompositions than the only one considered in the literature up to
now. Moreover, it is shown that all of these decompositions correspond to
circuits having different average minimal cost. This fact can be used in the
future to guide heuristics in developing better algorithms for reversible
logic circuit synthesis.
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Dekompozycje odwracalnych uktadow
logicznych

Streszczenie

Uktad logiczny jest odwracalny, gdy liczba wejs¢ jest rowna liczbie wyjscé,
a funkcja realizowana przez ten uktad jest wzajemnie jednoznaczna. Do tej
pory tylko w jednej publikacji rozwazano dekompozycj¢ uktaddéw
odwracalnych na takie bloki, z ktérych kazdy jest ztozony z bramek
odwracalnych jednego typu. W pracy prezentujemy znalezione przez nas
trzy inne dekompozycje uktadéw. Dzigki znalezieniu przez nas wszystkich
optymalnych uktadow o trzech wejsciach i trzech wyjsciach, pokazalismy,
ze rozpatrywane przez nas nowe dekompozycje prowadzag do uktadéw
o mniejszym koszcie niz dla wczesniej rozpatrywanej dekompozycji.
Zatem znalezione przez nas dekompozycje moga mie¢ duze znaczenie
przy konstruowaniu algorytméw syntezy odwracalnych ukladéw
logicznych generujacych uktady o mniejszym koszcie niz opublikowane
dotad algorytmy.

Stowa Kkluczowe: odwracalne uktady logiczne, dekompozycje uktadow
odwracalnych.

1. Introduction

A gate (or a circuit) is called reversible if there is a one-to-one
(bijective) correspondence between its inputs and outputs.
Research on reversible logic circuits is motivated by advances in
quantum computing, nanotechnology and low-power design.

Many reversible gate libraries have been examined in the
literature, but in this paper we will consider only the most widely
used NCT library consisting of NOT, CNOT and Toffoli gates
(denoted by N, C, T, respectively). Quality of a reversible circuit
is usually estimated by total number of gates (gate count) [1] or by
quantum cost (assuming that the cost of NOT, CNOT and Toffoli
gates is 1, 1 and 5, respectively) [1].

Recently, reversible logic synthesis has been extensively
studied. Logic synthesis for classical reversible circuits is a first
step toward synthesis of quantum circuits. Namely, it has been
shown that some important tasks of quantum computing like
circuits for implementation of Grover’s quantum search algorithm
[2] and stabilizer circuits [3, 4] use many NCT gates and contain
large parts consisting of classical reversible gates only. Thus,

synthesis methods that reduce the size of these sub-blocks would
in turn reduce the size of the overall quantum circuit as well.

Different representations of reversible Boolean functions are
being used in the reversible logic synthesis algorithms: truth
tables, Reed-Muller positive polarity expressions (PPRMs), Reed-
Muller spectra, permutation groups, SAT instances, quantified
Boolean formulas (QBFs), binary decision diagrams (BDDs)
matrices and graphs. Powerful tools, such as modern SAT-solvers,
state-of-the-art QBF-provers, BDD manipulation software, and
libraries of optimal 3-line and 4-line reversible circuits have been
applied to solve the problem. In one of the approaches [5] look-up
libraries consisting of millions of 3- and 4-input optimal circuits
(only one optimal circuit for each reversible function) is built.
However, satisfactory practical solutions for arbitrary libraries of
gates and arbitrary cost functions have not yet been found. In
addition, even NCT library synthesis techniques developed for such
circuits scale not well and optimal circuits not always can be found
even for relatively small numbers of inputs and outputs [5-7].

Decomposing a reversible circuit into blocks might help
simplifying circuit synthesis. If we consider that each block is
constructed only from the gates of the same type then each block
can be synthesised separately with simpler algorithms, e.g.
optimal synthesis of N-type block is trivial and the algorithm has
been constructed for asymptotically optimal synthesis of linear
circuits (C-type blocks) [3].

2. Basic notions

Definition 1 A completely specified n-input n-output Boolean
function (referred to as »n*n function) is called reversible if it maps
each input assignment into a unique output assignment.

Since reversible functions are bijective mappings they
correspond to permutations of rows in the truth table (see Fig. 1).

Input Output

00— 00
01 01
1010

11— 11

Fig. 1. An example of a reversible Boolean function
Rys. 1. Przyktad odwracalnej funkcji boolowskiej

Definition 2 An n-input n-output (n*n) gate (or circuit) is
reversible if it realizes an n*n reversible function.

Many gate libraries have been examined in the literature. We
will consider the most widely used NCT library consisting of
NOT, CNOT and Toffoli gates (denoted by N, C, T, respectively),
as well as its sublibraries (denoted by NC, NT, CT, N, C, T).

Definition 3 1*1 NOT gate performs the operation
»=x&1), 2*¥2 CNOT gate performs the operation
W1, y2) = (x1, x2 @ x;), 3*3 TOFFOLI gate performs the operation
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01> y2» ¥3) = (x7, X2, X3 D x;x;,), where @ denotes XOR. Pictorial
representations of these gates are shown in Fig. 1.

x—P—v X “nox 2
ng yz XZ£ yZ
)(3 y3

(©

(@) (b)

Fig.2. Pictorial representations of reversible gates: a) NOT, b) CNOT, ¢) Toffoli
Rys. 2. Symbole graficzne bramek odwracalnych: a) NOT, b)CNOT, ¢) Toffoliego

All the above defined gates invert one input if and only if all others
are 1, passing the other inputs unchanged to corresponding outputs.

Definition 4 Let L be a reversible gate library. An L-circuit is
a circuit composed only of gates from L. A reversible function is
L-constructible if it can be computed by an L-circuit.

Definition 5 For any gate libraries L,, L,, , Lj an
Ly|Ly| ... |Ly-circuit is a cascade of an L;-circuit followed by an
L,-circuit, ..., followed by an L;-circuit. A function computed by
an Li|L,| ... |Li-circuit is Li|L,| ... |Li-constructible.

Definition 6 If a reversible function is Li|L,| ... |L4
constructible and each of the libraries is equal to a sublibrary N, C
or T than the function has a decomposition Ly|L,| ... |L.

3. Circuit decompositions

Circuit decomposition is a special case of general circuit
transformation rules (first presented in [8]). A more general
framework was presented in [2] for studying possibilities of moving
gates along a circuit. A canonical form of an NCT-constructible
reversible circuit was pursued in which gates of the same kind are
grouped together. By applying transformation rules allowing to push
NOT gates towards the end of the circuit it is possible to show that
every NCT-constructible function is CT|N-constructible. However,
there exist CT-constructible functions which are not T]|C-
constructible [2], i.e., there exist NCT-constructible functions which
are not T|C|N-constructible). Decomposition T|C|TIN was
introduced in [2] and is the only one considered up to now. An
analysis how this decomposition can be applied to larger reversible
Boolean functions is also included in [2]. An example of an optimal
reversible circuit, implementing the function defined in Table 1, and
its T|C|TIN decomposition are shown in Fig. 3 and Fig. 4,
respectively. As it can be noticed a decomposition of a circuit does
not necessarily gives an optimal circuit.

Tab. 1. Truth table of the function realised by the circuits from Fig. 3-7
Tab. 1. Tabela prawdy funkcji realizowanej przez uktady z rys. 3-7

X3 X2 X4 Y3 Y2 V1
000 011
001 000
010 001
011 101
100 010
101 100
1710 1711
1711 1710

erreer:
Xz_ y2

)(3 y3

Fig. 3. Example of a reversible logic circuit
Rys. 3. Przykfad odwracalnego uktadu logicznego
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Fig. 4. Example of a T|C|T|N decomposition of the reversible circuit from Fig. 3
Rys. 4. Przyktad dekompozycji T|C|T|N uktadu odwracalnego z rys. 3
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It is easy to notice that each of the NOT, CNOT and Toffoli
gates is its own inverse. Thus, once G,G,...G, is a circuit for
areversible function f, then G, '...G,'Gy ! is a circuit for f It
can be shown that for both gate count and quantum cost if
G1G,...G, is optimal for £, then G,...G,'G," will be an optimal
circuit for the function f~'. Therefore, if the order of blocks in
a decomposition type T; is a reverse of the order of blocks in
a decomposition type 75 (e.g., CIN|T and T|N|C), then the number
of reversible functions which can be realized with a specified
minimal cost is the same for both decomposition types 7 and 7>.

Although some authors were convinced that the T|C|T|N
decomposition is helpful in developing efficient synthesis algorithms
[2, 3, 4] nobody has considered research on checking if there exist
another types of decomposition of reversible logic circuits.

4. Results

We have discovered that besides the T|C|T|N type there exist
other decompositions that are interesting for reversible circuit
synthesis. To find such decompositions we have prepared a special
program. Namely, by exhaustive calculations we have generated
minimal size reversible 3*3 circuits under gate count (GC) and
quantum cost (QC) minimization for all decompositions with three
or four groups of gates of the same kind (under the constraint that
each block type appears in a decomposition at most twice). A list
of these decomposition types is given in Table 2 (decomposition
are shown in pairs together with the inverse ones).

Tab. 2. List of all decomposition types with three or four blocks
Tab. 2. Lista wszystkich typéw dekompozycji o trzech lub czterech blokach

CIN|T/TIN|C CIN|C|T / TICIN|C CITINIT/ TIN[T|C
CITIN/N[T|C CINITIN / N[T|N|C N|CINIT / TIN|CIN
N|CIT / TICIN CIT[CIN / N[C|T|C N|C|TIN / N[T|CIN

TIC|TIN / N|T|C|T

CITIN|C / C|N|T|C

TICIN|T / TIN|C|T

P SR P 06 o8

W . I
2
X l ! m"r\
A\ % T T A\ %4
c | |
1 1

o
AV %

T

Fig. 5. Example of a T|C|N|T decomposition of the reversible circuit from Fig. 3
Rys. 5. Przyktad dekompozycji T|C|N|T uktadu odwracalnego z rys. 3
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Fig. 6. Example of a C|T|C|N decomposition of the reversible circuit from Fig. 3
Rys. 6. Przyktad dekompozycji C|T|C|N uktadu odwracalnego z rys. 3
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Fig. 7. Example of a C|T|N|C decomposition of the reversible circuit from Fig. 3
Rys. 7. Przyktad dekompozycji C|T|N|C uktadu odwracalnego z rys. 3

Only four of the considered decomposition types have the
property that for all reversible 3*3 Boolean functions there exist at
least one 3*3 circuit of the specified decomposition type. These
decompositions are bolded in Table 2. Examples of minimal such
decompositions are presented in Fig. 4-7. It can be noticed that
different decompositions result in circuits of different gate count.
In this example the C|T|N|C decomposition has the same gate
count as the optimal circuit from Fig. 3.
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Tab. 3. Number of reversible 3*3 functions having a specified minimal gate count
Tab. 3. Liczba odwracalnych funkcji 3*3 majacych dang minimalng liczbg bramek

Gate
Count

13
12

= A
o -

O =N W Hd O N 0 ©

5

Tab. 4. Number of reversible 3*3 functions having a specified minimal

TICITIN
N|TIC|T

10
57
327
1609
4820
8826
10340
7997
4206
1580
445
90
12

1
7.037

quantum cost

Tab. 4. Liczba odwracalnych funkcji 3*3 o danym minimalnym koszcie

kwantowym
Quantum = TIC|T|N
Cost NITICIT
32 9
31 33
30 51
29 58
28 63
27 225
26 784
25 1383
24 1389
23 902
22 936
21 2367
20 3983
19 3777
18 2223
17 1647
16 2955
15 4179
14 3438
13 1767
12 1062
11 1506
10 1875
9 1433
8 711
7 348
6 344
5 384
4 291
3 142
2 45
1 9
0 1
WA: 16.542

TICIN|T
TINIC|T

3

70
779
3896
9066
11071
8513
4626
1715
472
96
12

1
6.854

TICIN|T
TIN|CIT
3
31
56
87
66
51
411
1185
1689
1072
867
1979
3870
4110
2394
1746
3000
4149
3450
1821
1137
1512
1875
1466
720
351
350
384
291
142
45
9
1
16.400

CITICIN
N|CITIC

36
753
3748
8651
11225
8959
4682
1706
457
90
12

6.820

CITICIN
N|CITIC

30
490
1862
3222
3010
1848
2219
4572
5824
4194
1926
1394
2341
2853
2038
906
375
344
384
291
142
45

9

1
14.691

CITINIC
CIN|TIC

6

938
7932
13099
10482
5333
1913
508
96

12

1
6.513

CITINIC
CINITIC

748
3896
3772
1760

700
4214
7129
4856
1935

562
2131
3605
2414

963

257

254

477

393

187

51

9

1
14.388

Optimal

577
10253
17049

8921
2780
625
102
12

5.866

Optimal

470
4724
4346
1094
244
4903
8690
4053
933
902
3686
3224
1335
338
260
477
393
187
51

13.740

Tables 3 and 4 show how many reversible 3*3 functions can be
realized with a specified minimal gate count (column Gate Count
in Table 3) or a specified minimal quantum cost (column Quantum
Cost in Table 4), depending on one of these four decomposition
types (columns 2 to 5). The last column has been obtained by
exhaustive construction of all circuits having 1 gate, 2 gates, etc.
As the weighted averages (WA) of gate counts of minimal circuits
in Table 3 show three decomposition types have advantages over
the T|C|T|N type.

The differences between weighted averages are much more
substantial when using a quantum cost function (Table 4). This
case is of a greater practical interest since quantum cost was
defined as to reflect the expected cost of experimental
implementation. Moreover, from column 3 and 5 in both Table 3
and Table 4 one can draw the conclusion that we might obtain
shorter circuits locating NOT gates at a distance from both ends of
the circuit instead of locating all NOT gates at the very end as
many existing algorithms do. The types C|T|C|N / N|C|T|C and
C|TIN|C / C|N|T|C have smaller weighted averages than the other
two decompositions what suggests that it might be better to put
a CNOT gate block as the first or the last one in the circuit.

5. Conclusions

Our experimental data extrapolated to larger circuits can be
used in the future to guide some new heuristics. The main problem
that arises is how to decompose a reversible function in a way
corresponding to a specified decomposition type? This problem is
left open. Solving it would be a major step in speeding up
reversible circuit synthesis. A circuit designed as a cascade of
different optimal blocks might not be optimal as a whole (as
shown in the Fig. 3 and Fig. 4), but it can be synthesised faster
than with other known methods. Next, it can be reduced by
various methods such as using templates [6], peep-hole
optimisation and resynthesis approaches [5].
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