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Abstract

A sorting of quantum states routines with respect to the amount of
entanglement included is being introduced on the Quantum Computer
Simulator and intensively tested. In particular a sorting routine basing on
the lexicographic ordering of the corresponding Schmidt coefficients is
being formulated and tested. The corresponding algorithm relies on the
partial order relations and the final nonlinear sorting is given in terms of
MergeSort data.

Keywords: sorting of entangled quantum states, quantum computing
simulator.

Funkcje sortowania stanéw kwantowych
ze wzgledu na poziom splatania
zaimplementowane w symulatorze
obliczen kwantowych

Streszczenie

W artykule przedstawiono algorytmy sortowania stanow kwantowych ze
wzgledu na poziom splatania. Algorytmy te zostaly zaimplementowane
w ramach budowanego symulatora obliczen kwantowych. Przedstawione
zostaly dwa algorytmy, pierwszy oparty jest o porzadek leksykograficzny
wzgledem wspdtezynnikow Schmidta oraz drugi wzgledem porzadku
liniowego uzyskanego dzigki entropii von Neumanna. Zaprezentowane
zostaty takze wyniki dotyczace ztozonosci obliczeniowych przedstawionych
algorytmow.

Slowa kluczowe: sortowanie splatanych stanéw kwantowych, symulator
obliczen kwantowych.

1. Introduction

One the most important feature of quantum information
processing is the phenomena of entanglement of the corresponding
quantum states. The quantum teleportation protocols, application
to quantum cryptographic systems are the well known examples
of this. It is known that in general answering the question whether
a given quantum state p is entangled or not is NP-hard problem [13].

However, the following problem frequently arises. As an
example let us recall that in teleportation protocols the efficiency
of teleportation depends on the amount of entanglement in the
states used. Let

S =Py P - (1
be a given list of quantum states on a Hilbert space
h=H,®Hg. @)

of states of composite systems A and B. The problem is to sort the
set Y with respect to entanglement amount contained in states p;.

Depending on the notion of what and how the quantification
measure for calculating entanglement is defined linear and semi-
linear sorting algorithms are being formulated, then adopted as
a suitable sorting routine on a software being under intensive
developments at University of Zielona Goéra and called Quantum
Computing Simulator [7, 8, 9]. The adapted routines are then
finally intensively tested with the intention of checking the
computational complexity of the algorithms introduced.

2. Sorting based on the linear order caused
by von Neumann entropy

It is longstanding problem to construct a computable function
on quantum states quantifying the amount of entanglement
contained, separating the separable states from entangled one and
obeying some additional natural requirements, monotonicity with
respect to LOCC operations including [10, 11, 12]. Although some
functions obeying all these demands as above have been presented
in the literature [10, 11, 12] the real problem with them is that
they are hardly to be calculable in an efficient way.

Therefore instead of entanglement quantifying functions as
above we will be satisfied himself by a functions which are
monotone under LOCC operations called entanglement monotone
functions. In the case of pure states there exists essentially an
unique function of this sort (modulo some technical assumptions
[1, and ref. therein]) and is connected to the von Neumann entropy
of the corresponding reduced density matrices obtained by partial
tracing operations.

E(p)=—) 2 logl, . 3)

The algorithm of linear sorting of a given set of entangled states
on H,®Hp is depicted in Fig. 1.

3. Sorting based on the partial order caused
by LOCC'’s

Let
PP, €E(H ®H,), 4)

be two density matrices. The operational definition of comparing
the amount of entanglement contained in the states p,, resp. p; is
the following. The state p; is more entangled then the state p,
(symbolically):

Locc

P> P ®)

iff there exists a local operations complemented by classical
communications and such that after applying them to the state p,
we can produce the state p,. In other words the local operations
complemented with the information exchange in a classical
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channel can only decrease the amount of the existing
entanglement. Otherwise the quantum states p; and p, are not
comparable in the sense as above.

LIN-ENTROPY-Sorting Algorithm

Input:
aset ¥ of quantum pure stateson H , ® H
={y, )| v,
Output:

aset X*" sorted with respect to the amount of entanglement given
by equation (3)

st _ {‘ v, >,...,

v, )}
and
E(,Dﬁ”>)g < E(,D‘f,,‘\))

Step 1:
// compute the reduced density matrices by taking partial traces
for i=1:N,

4
Py, = T”H4 v, ><‘//i
Step 2:
// compute the spectra of the reduced density matrices
for i=1:N,
- Fi 4
[o,.V.]1= EtgenSystem(pw»)

Step 3:
// compute the von Neumann's entropies
for i=1:N,

En(i) = E(ﬂ@)) = _z A log 4,

k

Step 4:

// sort by classical sort-algorithm the set of values from step 3
CLASSICAL-SORT: {En(l),..., En(n)}

Step 5:

// display the sorted list of states

SOt _ {“//i] >,...,

WQ}

Rys. 1. Pseudokod algorytmu liniowego sortowania stanow kwantowych przy
wykorzystaniu entropii von Neumann’a

Pseudo-code for linear sorting algorithm of quantum states using von
Neumann’s entropy

Fig. 1.

It is easy to see that the relation (5) defines a partial order on the
space of quantum states in the sense that this relation is transitive
and irreflexive.

In order to proceed further we have to explain what we mean by
sorting the space equipped with partial order instead of the well
known case of linear order which is the classical problem of
informatics and is very well known explored topic [6].

Let P = (X,<) be finite partially ordered space (poset). A chain
C < P is a subset of mutually comparable elements. The height of
an element x is the maximum cardinality of a chain whose
elements are all dominated by x. The set of elements of height 0 is
called the set of minimal elements. An anti-chain 4 in P is a subset
of mutually incomparable elements. The width w(P) of poset P is
defined to be the maximum cardinality of an anti-chain of P.

A decomposition CC of a poset P into chains is a family
CC=[C,,C,,...,Cp] of disjoint chains such that their union is equal
to P. The size of a decomposition is the number of chains in it. A
decomposition of size w(p) is called a minimum chain
decomposition. Dilworth’s theorem guarantees the existence of
chain decomposition of P of size w(P).

The sorting problem for a given poset P is to completely
determine the partial order < in X. In the absence of a bound on
the width the query complexity of such sorting problem is exactly

n
T(n) =(2], (6)

where n=card(P). In the case of sorting problem for a linearly
ordered set P we have w=1.

In the paper [5] two algorithms for sorting posets have been
described, both of which have query complexity O( w*n log n/w).
The total complexity of sorting posets first algorithm as
formulated in [5] depends on the subroutine for computing a chain
decomposition (the complexity of which is not analyzed in [5].

The first algorithm of [5] is in some sense the generalization (of
the well known in the linear case) of MergeSort classical
algorithms and it is this algorithms which we adopt to our problem
at hands. Adaptations of an another algorithms are under
preparations and will be presented elsewhere.

The query oracle that will be used in our quantum algorithm is
based on the following theorem by Nielsen [1, 2].

Theorem 1 [Nielsen]

Let p, = "//1 ><l//| , Py = ‘l//z ><l//2 ‘ be a pair of pure states of the same
Schmidt rank k. Than the state ‘l// 1> is more entangled in LOCC sense
iff for any i=1:k

AW+ AMSAQR) A @)
where {3, (a),..., 4 (@)} = A(a) is the set of the Schmidt’s coefficients

7 >, a =12 ordered in descending order. If ,say ,the
v 1> is

of the vector

Schmidt rank of \l//1> is bigger than this of \l//2> then the state

more entangled then |v,).

The query oracle used in the following is:

2N-Query Oracle Algorithm

Input: two vector stateson H =H,® H,, V ={p,, p,}
Output: (p, < p,)or(p, < p,)or non—comparable
Step 1: for i=1:2
{1y, Y (0)..... 4, ()} }=SchmidtDecomp(V;)
sort the set {/11(1‘),..4,1,; (i)} in descending order

Step2:
if r; > ryreturn (p; < p,)

if ry > 1y return (p, < py)

Step3:
ifri=r,

if \/ [2 PHOES 21?(2)]then return (p, < p,)
i1

J=ln \i=l

J J
if \/ [2,1,?(2) < 2/1,?(1)] then return (p, < p,)

j=ln \Ui=1 i=1
return non-comparable

As the final output of our algorithm will be presented in the
form of CHAINMERGE -like data structure we describe this
point now.

Let CCH[Cy,...,Cp} be a chain decomposition of a poset
P=(X,<). CHAINMERGE (P,CC) stores, for each element x € P,
a p indices as follows: Let C; be the chain containing the element
x. The data structure stores the internal index of x € C;, and, for
all 1<j<p,j#i,the index of the largest element of the chain C;
that is dominated by x. The performance of this type of the data
structure is very good as given CHAINMERGE(P, CC) data, the
relation < in P of any pair of elements can be found in constant
time.
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Now the corresponding algorithm runs as follows

LOCC-V-MERGESORT Algorithm
Input:
v=ly)li=1....n
/1 a list of vector states on the space H = H , ® H,,
Output (1):
The partitioning of V:
V=[V,,...,V;] where
Vi €V, SchmidtRank(V;) = r;= const; r;<r,<...<r, and U;V(i)=V
// partitioning with respect to increasing Schmidt’s rank
Output(2):
for i=1:r

ChainMerge(V;)

// data

Step 1:
for i=1:N
S(i)=SchmidtDecomposition(V(i))
18G)=Ir(0), (A (e A (D))

/I Schmidt decomposition data, in particular r(i)=SchmidtRank of ‘l//i>
Step 2:
r*=max(r(1), ...,r(N))
for o =1:r*
V(@)= ]
for i=1:N
if r(i)=a then V(0)=[V(), |va) ]
end for
Step 3:
for o =1:r* do Steps 4 — 8
Step 4:
Choice randomly |y )<V (a) and
R =(w){)>
REM=PiR*(2) =1}
U=V |v) }
Step 5: while U(a)#0 do
Step 5.1: choice |y;)eU(a)
Step 5.2: U(w)=U(@)\{]v )}
Step 5.3: construct a chain decomposition
C(o)y={ cf".c5...c5,} of re
Step 6: for i=1:q
Step 6.1: Do binary search on ¢ using 2n-
query-oracle to find smallest element (if any) that dominates |y;)
Step 6.2: Do binary search on ¢# using 2n-
query-oracle to find largest element (if any) that is dominated by |v;)
Step 7: Infer all results z* of 6.1 and 6.2 into r*:
R =R*()uw)
R%(2) = R*(2)UR®

Step 8:
Step 8.1: Find a chain decomposition ¢« of r*
Step 8.2: Construct ChainMerge( r%, ¢« ) data.
Step 9:
return:
V=[V,,V,,...,V{]
ChainMerge(V)=[ChainMerge(V;),i=1:r]
STOP.

In general case of mixed states the effectively computable
function checking whether for a given pair {p;, p,} the relation
p1 < po holds seems be not available at present [11, 12]. It is long
standing problem to construct a computable function on states
quantifying the amount of entanglement contained, separating the
separable states from entangled one and obeying some additional
natural requirements, monotonicity with respect to LOCC
operations including [10, 11, 12]. Although some functions
obeying all these demands as above have been presented in the
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literature [1, 10] the real problem with them is that they are hardly
to be calculable in an efficient way.

states states states states
with rank=1 with rank=2 with rank=3 - with rank=n

-
Wy Wil
w5

Rys. 2. Ogolna idea sortowania stanow kwantowych, opartych o porzadek
leksykograficzny wykorzystujaca dekompozycje¢ Schmidta. Wynikiem
jest struktura odwzorowujaca czg$ciowy porzadek, gdzie w zbiorze
stanow o tym samym rzgdzie Schmidta moga wystapic¢ ciagi liniowe
elementow, ktore sa nieporownywalne

Fig.2.  General idea of sorting quantum states where the lexicographic order
is used. In result the obtained structure represents the partial order where
in the sets of quantum states with the same Schmidt rank may contain
a linear chains which are non-comparable

4. Result of sorting qubits and qudits
systems

Let’s consider family of the general Bell entangled states for
qudits. In case of qubit (qudit with freedom level equal to two)
these states have following form

B’ =4a|00)+b[11) and B' =a|01)+5|10) )

in both cases of course
laf* +[ef* =1 @®)

If the number a and b are the same we called such states the
maximally entangled Bell states. Generalized maximally
entangled d-level Bell states for two qudits can be expressed by
the following equation

1 d-1 B
\'//L’q>=ﬁz[‘;ez’"‘”””’\ﬁ\(j+q)modd>, )
<

[z

where small letter “i” represents the imaginary unit. It is possible
to express equation (9) in terms of qudit gates

i) =, ®X )" (H,®I,XZ,®1,)"CNOT,|00) (10)

where symbol “/” represents the identify matrix for qudits with d-
level, and H represents the Hadamard gate and Z, X are
generalized Pauli’s operators.

A simple function written in Python which uses the QCS
module to generate entangled states is depicted in the Fig. 3. We
use this function to make entangled states for earlier created
a quantum register.

However these states have always the same amount of
entanglement. Therefore function from Fig. 3 must be equipped
with some additional unitary gate to modify of entanglement
amount. In qubit cases the additional rotation gate after Hadamard
gate can be used. In general any random unitary gate may be used
to generate Bell states with uniform distribution of amount of
entanglement.
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def make psi(_r,p,q):

_r.Reset()

for i in range(0,q):
_1.NotN(1)

_r.HadN(0)

for i in range(0,p):
_r.PauliZ(0)

_r.CNot(0,1)

Rys. 3. Funkcja tworzaca dowolny splatany stan Bella dla danego rejestru
Fig. 3.  The function written in Python preparing the entangled Bell states
for given register

Using function from Fig. 3 and computational procedure to
calculate of von Neumann entropy it is possible to make a simple
benchmark. Additionally, to obtain comparable result we make
simple test as a script in Python language for quantum register
built only from qubits. The test contains the following
computation steps: first we generate n quantum registers, for every
register the von Neumann entropy is calculated, and after these
steps we sort the obtained list using the classical method called
sorting by selection. In Fig. 4 presents the time of work of this
simple test.

As we see when we double the number of registers to sort we
double the time, because of the use only the selection sort which
has theoretical complexity equal to O(1%).

Linear sorting of quantum states

Number of registers using von Neumann’s Entropy
(results in secs)

10 0.0008762

100 0.0048304

1000 0.1407390

2000 0.4907356

4000 1.8053686

10000 10.643833

Rys. 4. Czas pracy testu sortujacego losowo wygenerowane rejestry kwantowe
o réznym poziomie splatania w sensie entropii von Neumann’a

Fig. 4.  The time of sorting test which uses the randomly generated quantum
registers with a different amount of entanglement in sense of von
Neumann’s entropy

5. Conclusions

It is clear that still some very important questions have to be
answered, the question of how to formulate an effectively
calculable query Oracle for comparing the amount of

entanglement in the case of mixed states seems to be one of the
most important among them. The formulated in the literature
procedures like entanglement distillation protocol and similar one
are hardly to be used as an effectively computable tool for this
purposes.

As in the classical case there do exist several different versions
of quantum states sorting process. The mentioned algorithms
sorting the space of quantum states together with theirs
computational complexity analysis will be presented in our
forthcoming publications.
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