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Abstract

A finite element model of complex structures is formulated in the paper.
Equations of motion are presented. The material and geometrical input
data of a suspended bridge, modeled as a cable-beam-shell system, is
described and the impact-type loading is assumed. Structural and
computational aspects of the system at hand are discussed in detail via
illustrating numerical results.
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Analiza komputerowa statyki i dynamiki
konstrukcji ztozonych metoda
elementéw skonczonych

Streszczenie

W pracy sformulowano model elementéw skonczonych dla konstrukcji
zlozonych. Zaprezentowano ukltad réwnan ruchu. Opisano materiatowe
i geometryczne dane wejsciowe dotyczace przykladowego mostu
podwieszonego, zamodelowanego jako uklad kablowo—belkowo—
powlokowy. Przyjeto obciazenie dynamiczne typu naglego uderzenia.
Aspekty konstrukcyjne oraz komputerowe rozpatrywanego uktadu
przedyskutowano szczegétowo przez ilustrujace wyniki liczbowe.

Stowa kluczowe: Konstrukcja zlozona, dynamika, thumienie Rayleigha,
element skonczony.

1. Introduction

Civil engineering is presently one of the fastest developing
areas with respect to modern forms being created as well as
materials. An aspiration for obtaining slenderer and more amazing
shapes crossing the barriers of the height and span of structural
members is observed in architecture for some time nowadays.
Bridges are the frontier in this matter, especially suspended ones.
The view of thinner and more prone for displacements plates
suspended on a set of lines delights and at the same time arouses
anxiety for safety. However despite the weak looks, they satisfy
strict rules, concerning designing as well as the materials used,
that guarantee solid built.

One of those structures that can be designed in Poland in the
future may turn out to be similar to the Seri Wawasan Bridge in
Putrajaya, Malaysia, with the span of 240 m, suspended on steel
cables, the looks resembling a sailing boat. The view of 85-meter
pylon supported by monumental arches delights and moves. The
object became inspiration for this work, especially the way the
finite element method (FEM) can be used to compute state-of-the-
art architectural forms.

It is known that FEM is the most effective way of calculation
constituting the basis of majority of modern computer codes used
for structures. The aim of the text is creating an a FEM model of
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the object mentioned above and its static and dynamic analysis. It
can be treated thus an attempt to ‘redesign’ such a bridge
according to recent structural codes used in Poland.

In the age of modern, unstable times, some terroristic threat is
not by all means unreal. Therefore, in this work we defined
a dynamic load as a direct hit with a significant intensity, imitating
an attempt to destroy the structure. Making the analysis we found
the most strained elements and present their vibration caused by
the given impulse.

2. Equations of motions in the FEM context

The system is first discretized by a mesh of finite elements.
Nodal displacements are determined and internal forces are then
calculated. Let us assume # ={u,,u,,u3} be the displacement vector
at any point inside a finite element while @ * = {u; % u,* uz*,...,u;*}
the vector of nodal displacements, described in the element's local
coordinate system as, cf. [1]

(¥)=H®)a* (1), (1

where H (x) is the shape function matrix. For the three-dimensional
(3D) beam element we have @ ={u,v,p} and @ *={ u,v,0; u;v,p;}.
The strain vector can be expressed as

(@) =B®u*(), )

where
~ . dH(X
B(x)= dH(x) . 3)
Using the generalized Hooke's law the stress vector can be written
in terms of the strain vector via the constitutive relationship in the
form
G=Ce=CBu* 4)

C being the constitutive matrix which regulates dependence
between stress and strain.
We transform #(X) into the global coordinate system by

u=Tg- )

where T is the transformation matrix, including directional cosine
entries and g is the nodal displacement vector in the global

coordinate system.

In order to formulate equations of motion we use the expression
for total energy of a system. We apply the Lagrange's equation of
the second type in the form, cf. [2]
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where L = E; - E, + W is total energy of the system, with £ and E,,
being kinetic and potential energy, respectively, and W external
force work.

[ R
E, = '[Earngziu T K %, (7
v

The symbol K , denotes the stiffness matrix of the considered

element in the local coordinate system. We have to transpose it to
the global coordinate system to get

E = lqueq. (®)

The global stiffness matrix of the element can now be expressed
as

R -T'RT ©)

e

The system global stiffness matrix of the whole structure yields
R, =K. (10)

Clearly, after imposing boundary conditions matrix EG is

symmetric and positive definite. Its dimension is equal to the
number of system degrees of freedom (DOF), denote by N, being
number of components entering the vector g, .

Further, kinetic energy reads
E = | L pitiay = Lt it e (11)
g 2 20

v

where p is the mass density and M, is the mass matrix in the
local coordinate system, expressed by the equation

M, = Jpﬁ]rﬁdV‘ (12)
14

That implies kinetic energy in the global coordinates
E =il (13)

where
M,=T"M,T. (14)

Assuming that F is the vector of external forces acting at the
nodal points we write external work in the form

W= jﬁTFdea*TQ, (15)

v

where Q, is the nodal loading vector in the local coordinate
system, i.e.
0, = jHTFdV. (16)
Vv

Rewriting external force work into global coordinate system we
have

W=4"0., (17

where

0.-715,. (18)

e
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Total energy in the matrix form can be express as

L= %ﬁ’ﬂ,‘ﬁ—%ﬁﬂ R,i*+T70,. (19)

Taking advantage of the Lagrange's equation of the second type
we note that

_R,i*+0, — M,i* =0, (20)

Rewriting energy to the global coordinate system we get equations
of motion in the FEM context as

Mg +Kq=0. @D
When damping effects are taken into account we have
i + G-+ Kg = 000, @)

In many cases it is convenient to consider the damping terms as
a linear combination of the mass and stiffness terms, so that the
Rayleigh's damping matrix can be assumed as

C=aM+ BK, (23)

where o and f are the coefficients, obtained in an experimental
way.

If the inertial and damping effects are neglected, the first two
terms on the left-hand side of Eq. (22) vanish, leading to

IZG&G = Qm (24)

where QG now becomes time-independent. This way we obtain

the set of static equilibrium equations in matrix recording.

Recalling Eq. (23) it is pointed out here that in the framework
of the superposition method [3] the modal damping coefficients
can conveniently be computed. To this end we first note that the
coupled equations of motion (22) can be transformed into the base
of the normal (modal) coordinates y, ,n=1,2,..., N, as

g =y, (25)

where ¥ ={y,,1,,., Vyt> @ = [6],62,.__,6\,,] is the eigenvector
matrix, solved for by the generalized eigenproblem, cf. [3]

(K-qir)p =0, (26)

with O being a diagonal matrix, whose entries are the system
natural frequencies squared, Q = [@},0;,...,0,]. Taking on

account the mass orthonormality and stiffness orthogonality,
expressed respectively as

O"MD=1, D' KD=0Q, (27)

we arrive at the uncoupled system of the form

B, +24,0,5, 0y, =®,0,

n-"n

n=1,2,...,N. (28)
The n-th modal damping factor A, is determined from, cf. Eq.
(23)

C =B'CD =a+tfo (29)

and, by assumption, from
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C, =220, (30)
implying
ﬁn=1[“+ﬂwnj, (31)
2|\ o,
or, generally
A= 1[5 + ,Ha)} (32)
2\ @
Clearly, if
=%, (33)
1)

then A tends to minimum. This implies

a=io, f=2 (34)
w
and
A=A, T (35)
20 7'T
With
2
r=2%, 1 -2 (36)
[0 [0

The damping factor A will be on input applied in numerical
analysis below, in Section 4.

3. Structure description — FEM model

The FEM model is inspirited by the most characteristic bridge
in Malaysia, in our opinion. It is asymmetric cable-stayed bridge
with inverted-Y pylon height 85 m. Its look resembles a sail ship,
Fig. 1.

Fig. 1.  Suspended bridge
Rys. 1.  Most podwieszony

The total length of the bridge is 240 m with the main span 168.5
m. The employed materials are: pylon — reinforced concrete,
cables — steel. The number of cables is 102. The deck width is
37.2 m.

As mentioned before, the goal of this work is thus, in
a computationally experimental way by the finite element setting,
an attempt to 'redesign' the structural model according to the
existing Polish rules of civil engineering. The main input data are
so assumed as follows: height of the non-forked pylon — 100 m,
length of main span — 160 m, total length of the bridge — 220 m,
total width of deck is 40 m, including lanes —6x5,0 m, pavements

— 2x2,5 m and median part — 5 m. The main span hangs on 62
symmetrical cables connecting a pylon and a plate. The Pylon is
supported by back-cables and steel arches. Between the arches and
pylon are designed additional steel ties with cross-sectional areas
significantly smaller than those of the main cables.

The whole structure is modelled by three 3D element types —
truss, beam and shell. Clearly, all the cables are considered as
truss elements and only axial forces can be found in them. The
pylon, arches and ribs are divided into beam elements. The deck is
split into shell elements. The number of particular elements are:
trusses — 154, beams — 675 and shells — 510. The total number
of system degrees of freedom is equal 3536. Regarding the
numerically experimental character of the paper we consider the
structure as if it were located in Szczecin, Poland. The structural
scheme is shown in Fig. 2, cf. [5]

Fig.2.  Structural scheme
Rys. 2. Schemat obliczeniowy

In order to simplify the FEM modelling, creating a forked pylon
in the form of letter 'Y' was relinquished and a caisson cross-
section, whose size are as in Fig. 3(a) was adopted.

() (b)

Fig. 3.  (a) Pylon’s cross-section, (b) Arch’s cross-section, (c) Plate model
Rys. 3. (a) Przekrdj poprzeczny pylonu, (b) Przekrdj poprzeczny tuku,
(c) Model ptyty

The main span is designed as a plate from special composite
material (E=10" kN/cm?” and v=0,25) strengthened with longitudinal
and crosswise ribs from steel. Ribs are attached to the bottom of the
plate. However, adopting such a scheme in FEM would require
complicated and time-consuming calculations, which were avoided
by using a simplified model as given in Fig. 3(c).

Assumed plate’s thickness of cross-section d = 30 cm. For
reducing weight of span we decided to stiffen the plate by using
steel against reinforced concrete for ribs. The computer code
used to calculate the chosen structure by FEM allows to model the
arch as a shell with variable lengthwise cross-sections. For
simplification we accept the constant lengthwise pipe cross-
section, Fig. 3(b).
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In the calculation we assumed the ropes are assumed in the
form of seven galvanized wires ®5 mm which are in the HDPE
coat, because they are the most widespread. The following
material data are adopted, [4]: yield stress oy = 1670 MPa,
breaking strength R, = 1870 MPa and Young’s modulus £, = 200
GPa. The cross-section of main ropes A, = 63,02 cm’ the ties
connecting pylon with arches are less strenuous and they have
secondary function so we take for them cross-section in the form
of single bar from high-performance steel with diameter equal to
36 mm 4., =10,18 cm’. Accepted Young's modulus for these
cables is 210 GPa, in accordance with [4].

4. Numerical results

In static analysis we focused rather on considering the way
particular structural members cooperate than on creating the basis
for designing. In the calculation we adopted then, for the sake of
simplification, only the loads below at their maximum values:

- constant surface load — according to Polish rules 82/B-020010 and
85/S-10030 the system of roadway layers g;, = 14,865 kN/m* and
system of pavement layers g,,= 19,26 kN/m?*,

- constant linear load: kerbstone — 0,891 kN/m, cornice — 4,331 kN/m,

- moving load of road bridge objects - on the basis of Table 5, of
Polish rule 85/S-10030 we established: class of object as A,
permissible weight of vehicle — 500 kN, load of cars’ train —
qg=4,0 kN/m?, K = 800 kN, pressure on axle 200 kN,

- crowd load ¢,,= 3,25 kN/m?,

- computational value of suction effect of wind on the plate of span
with perpendicular horizontal flow of the air — w;; = 0,65 kPa,
computational value of horizontal pressure of load on the cross-
section of the main girder — w,,= 1,625 kPa, static wind load on the
pylon.

Because of the size of the structure the cables' length reach of
150 m, which makes them work like springs and not fulfill their
carrying function. Initial tensions are required in order to make
them carry load experimentally. This significantly decreases the
deflections of suspended part of the span. Simultaneously, it
increased the deflection of the adjoining plate rested on the
supports. The results of internal forces and nodal displacements in
chosen elements are presented in Tables 1 and 2.

Tab. 1. Displacements at the representative nodal points of the pylon
Tab. 1. Przemieszczenia wybranych punktow weztowych pylonu

Nodal X Y z XX Yy 2z
. Translation Translation Translation Rotation Rotation Rotation
point [cm] [em] [em] [rad] [rad] [rad]
635 9,41E-01 -9,11E-13 -4,45E-01 1,85E-16 3,23E-05 4,78E-16
610 7,06E-01 -4,39E-13 -3,89E-01 1,56E-16 1,01E-04 3,29E-16
580 2,97E-01 -9,37E-14 -2,32E-01 747E-17 1,23E-04 1,50E-16
Tab. 2. Displacements of the representative nodal points of the plate
Tab.2. Przemieszczenia wybranych punktow weztowych plyty
Nofla] Tranziation Tran:{alion Z Translation Ro)t(a)t(ion Ro‘I(a‘tion Rolza%ion
point fem] fem] fem] [rad] [rad] [rad]
309 1,75E-02 4,47E-04 -8,99E-01 -3,45E-02 -8,05E-04 0
310 1,74E-02 3,59E-04 -9,56E+00 -3,41E-02 -8,49E-04 0
311 1,73E-02 2,39E-04 -2,50E+01 -2,78E-02 -6,45E-04 0
312 1,72E-02 1,42E-04 -3,69E+01 -1,87E-02 -3,81E-04 0
313 1,72E-02 4,75E-05 -4,29E+01 -526E-02 | -3,12E-04 0
314 1,72E-02 -1,19E-15 -4,35E+01 -1,09E-16 -3,21E-04 0
315 1,72E-02 -4,75E-05 -4,29E+01 5,26E-02 -3,12E-04 0
316 1,72E-02 -1,42E-04 -3,69E+01 1,87E-02 -3,81E-04 0
317 1,73E-02 -2,39E-04 -2,50E+01 2,78E-02 -6,45E-04 0
318 1,74E-02 -3,59E-04 -9,56E+00 3,41E-02 -8,49E-04 0
319 1,75E-02 -4,47E-04 -8,99E-01 3,45E-02 -8,05E-04 0

In dynamic analysis we consider the case of a sudden hit of
a significant amount on to the top of the pylon. The eigenproblem
is solved for the first 12 eigenpairs and converged after 11
iterations. Dynamic analysis is carried out by the mode
superposition method with 2000 time steps Af with 0,02 s, each.
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The assumed damping factor is A=0,01. We apply the impulse 10°
kN at time zero and decreases to 1000 kN after 40 seconds.

What was foreseeable that the influence of the larger vertical
vibrations occur in the middle of the suspended part of the plate,
the vibrations the others are smaller. The largest vibrations in the
X-axis direction are at the point number 635, on the top of the
pylon. The nearer the basis the smaller the displacements are. The
obtained results are described in Figs. 4.
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Fig. 4.  (a) Displacements in the plate, (b) Displacements in the pylon
Rys. 4. (a) Przemieszczenia na plycie, (b) Przemieszczenia na pylonie

5. Concluding remarks and future work

e Dynamic effects cannot be ignored in designing such modern
slender structures. Some options of dynamic analysis should
necessarily be given in design rules.

e The maximum value of deflation of the plate is about 44 cm. It may
be too large and not satisfy the requirements of Polish rules. Further
work at this model would be advisable, considering the way to
overcome this through other material solutions for the plate.

o [t should be necessary to consider efficient ways for the initial
compression of the cables in order to simultaneously determine
the value of the tensions on their cross-sections.

e [t should be recommended to consider modern, high-quality
materials for particular structural members and as well as
possible changes in the constructions of structural models.

e This text serves as the starting point for further work in the
forthcoming paper.
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