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Streszczenie

The paper deals with applying the optimal control method in design of
a composite girder subjected to constant and varying loads. The maximum
principle was applied to optimal shaping of the composite structures. The
multipoint boundary problem was formulated using the maximum
principle. Optimization concerns cross section shaping for different cost
functions with constraints resulting from technical rules and standards.

Slowa kluczowe: optimization, optimal control, maximum principle,
optimal modeling.

Teoria sterowania w optymalizacji konstrukciji
Abstract

W artykule przedstawiono oryginalna metod¢ obliczen konstrukcyjnych
oparta na zasadzie maksimum. Zasada maksimum pozwala sformutowac
warunki konieczne optymalizacji 1 sprowadzi¢ problem optymalnego
ksztaltowania do wielopunktowego problemu brzegowego, ktory nastgpnie
moze by¢ rozwigzany numerycznie. T¢ metode zastosowano w obliczeniach
konstrukcyjnych stalowo-betonowego dzwigara zespolonego poddanego
dziataniu ztozonych uktadéw obciazen stalych i zmiennych z uwzglgdnieniem
stanow montazowych. Metoda umozliwia przyjecie roznych funkcji celu
oraz zlozonych ograniczen wynikajacych z przepiséw technicznych i norm.

Keywords: optymalizacja, optymalne sterowanie, zasada maksimum,
optymalne ksztattowanie.

1. Introduction

The optimal control theory, and particularly one of its methods
called the minimum principle, is being applied in optimizing
structural elements and structures. Formulating form optimizing
problems consisting in the category of the control theory requires
establishing a mathematical model, in which the variables of state
and control, the constraints and the objective function are defined.
The minimum principle is being successfully applied in
optimizing building structures with boundary conditions and
internal point conditions. That principle makes it possible to set
up the necessary optimization conditions, which essentially are
multi-point boundary conditions for a system of ordinary
differential equations, or generally speaking - are a differential-
algebraic constraints problem.

Correct formulation of optimum shaping problems is
particularly important, i.e. selecting the objective function, the
deciding control variables and the necessary constraints. Properly
assuming these magnitudes enables exhibiting the advantages
resulting from optimization. Taking into account a greater number
of variables makes it considerably more difficult to achieve the
optimum solution. The problems of optimum forming in civil
engineering are characterized by many controls and multiple
limitations. It is important to assume such a structure of control,
which is appropriate for the particular problem, i.e. the sequence
in which the controls determined by various conditions come up.

The numerical solution is being achieved by intermediate
methods, i.e. the multipoint boundary problem of canonical
differential equations is solved numerically for the optimal control
structure. The scientific software Dircol-2.1 makes it possible to
effectively solve numerically formulated optimizing problems [1, 10].

2. General formulation of the problem

This paper analyzes the problem of optimum control of the
Mayer type. Sought is the control variable u, which is the result of
the following problem:

ming(y(l)), ¢:R™ >R
y=fu), f: R™ xR™ > R™
S(»)=0, S:R™ ->R"™ 1
g(y,u)=0, g:R" xR™ —R"
P(3(0),y(1),1)=0, ¥: R xR™ xR —> R,

with the functions of state ¥ :[0,/] > R™ and the control

u :[0,/]—> R™ 1In some cases instead of the Mayer-type function

as the objective function, the Boltz-type function is being
considered [9].

min{go(y(l))+ EL(y(x),u(x))dx} , 9:R" >R, L:R” xR - R
)

Generalization of the problem (1), which is considered in this
paper, occurs in cases of discontinuity of state variables at the
internal points x;, of the sectional defined right-hand sides of
differential equations £, and of problems clearly dependent on the
independent variable x.

8i

We assume that the gradients of all active constraints

g 20,i=1,..,n, are linearly independent. The initial and

terminal boundary conditions have
Y(0) =y, =0, Y((D,)=0.

The necessary optimality conditions are set up for
a representative control structure with the boundary ranges x,,, x.
and the contact point x,. Setting up the necessary optimality
conditions as a multi-point boundary problem, the numerical
solution of which is possible, we assume the existence of the
boundary range x,,, x., in which the constraint g(y, ) = 0 is active.
The range of admissible controls (y) is defined by

generally the form

Q) = fu e R™ | g(y,u) =0} 3)



347

PAK vol. 55, nr 6/2009

The algebraic-differential boundary problem resulting on the
base of the minimum principle has the general form:

y'=f(yu), -¥=H,
0=2"-f,(yu)+u" - g,(yu)
0=g,(yu), ie[x,,x,] 4

Ozlui ’ if[xw"xz]
H=2"f(yu)+u" -g(y.u)
A )= (x)=vS,(0(x,), v 20

with the natural boundary conditions

__ 00
oy(0) oy(l)

0=-22, may 5)
X
D(y(0), y(1).1) = p(1) + a"¥(y(0), y(1).1)

The system of differential equations (4) has a special structure in
the scalar control function n, = 1. The non-linear state equations
depend only on the state y of the system, and the conjugate
equations are linear as control depends only on the state of the
system. The numerical solution of the problem can be achieved
using the software Dircol-2.1 [10].

3. Computational example — optimization of
a composite girder

3.1. Description of the girder

The girder to be optimized consists of the two main elements of
a triple span road bridge with spans of 60 — 90 — 60 m length. The
steel part of the bridge consists of an I-section plate girder. The
dimensions of the bottom flange and the web thickness are varying
and shall be determined by optimization. The upper flange, having
a fixed width, is rectilinear while the bottom flange has
a predefined parabolic profile. The girder is a continuous beam
(Fig. 1). It is a plate girder combined with the reinforced concrete
slab platform, interconnected at the bearings. The cross section of
the composite girder, its main dimensions and designations are
shown in Fig. 2 [2].

Ay
h,=2.5m h,=50m 'h,=25m ! I x
- -
& ‘ =
| L.,=60m L,=90m L L.=60m

Fig. 1. Diagram of the girder
Rys. 1. Schemat dzwigara

The cross sections determined in the course of optimization
shall satisfy the ultimate state criteria of load capacity and
serviceability according to mandatory standards. These states shall
not be exceeded neither during assembly, nor during the service
life of the object. It is therefore essential to anticipate and take into
account in the optimization scheme all critical design situations
concerning the ultimate states of load capacity and the
serviceability limit states, which can occur from the time of
starting construction to the end of the service life. The
optimization problem shall therefore be preceded by an analysis of
the assembly state and the possible loading combinations during
the usage of the object.

Yo

Neutral axis of the y
C combinet section

C.
L=y,
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Fixed dimensions of the cross section

bg=0.400 m
t=0.020 m
by=0.120m
hs=0.060 m
b, =4.000 m
h.=0.250 m
z,=0.250 m

Web height:
Pimin = 2.500 m
Nimax = 5.000 m

Adoptable variables:
u; — Bottom flange thickness
u, — Bottom flange width
u3 — Web thickness

Fig.2.  Cross section of the girder and designations
Rys. 2. Przekroj poprzeczny dzwigara - oznaczenia

3.2. Assembly phases

The condition of the system in the phases depends on two
factors, namely the structural system and the load pattern. During
assembly, the service phases are determined mainly by
considering the structural system, while during the service period
only the load pattern is decisive.

Phase 1.

The bearing sections of the steel girder resting on the fixed
bearings and the erection bearing (Fig. 3) are assembled during the
first phase. Concreting of the deck slab on the assembled parts is
also carried out in the course of that phase. Is was assumed that
both the geometry and the loading of the object are symmetric
during the assembly phases, therefore the half system was
considered in the analysis (Fig. 4). In the further parts of this paper
the remaining assembly phases are described in a generalized
manner only.
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Fig.3. Schematic diagram of the first assembly phase
Rys. 3. Schemat ideowy montazu w pierwszej fazie montazowej
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Fig. 4. Load pattern of the girder during the first assembly phase
Rys. 4. Schemat dzwigara w pierwszej fazie montazowe;j

Phase 2.
Tensioning the deck slab by raising the erection bearings at points
2 and 4.

Phase 3.
Tensioning the bearing sections of the deck slab by means of stressing
cables.

Phase 4.
Assembling the steel girder and concreting the deck slab on interspaces
1 and 4.

Phase 5.
Assembling the outfit and bridge flooring.

Appropriate additional load systems resulting from construction
work are considered in all assembly phases. The geometrical
characteristics of the cross section varying along the girder axis
were also considered, taking into account the method of assembly
and the rheological phenomena occurring in concrete.

3.3. Service phases

Standard specification loads and their most unfavorable
combinations were considered for the service life phases. The
following service phases regarding loading were assumed:

— Phase of loading by trucks ¢ and a crowd of pedestrians p - 4
load combinations.

— Phase of loading by a vehicle K - 7 load combinations to
determine the influence line of sectional reactions.

— Phase of creeping, in which the redistribution of sectional
reactions due to creeping in the service life was considered.

— Phase of concrete contraction in the service life.

— Phase of thermal loads — 2 extreme design situations, in which
the steel girder and the concrete slab reach the maximum and
minimum temperatures according to the standard code.

The half-section load pattern was assumed in all considered
design situations, with the corresponding bearing or corresponding
conditions of the state variables at the symmetry axis of the object.

3.4. Equations of state

The paper describes only the general methods of formulating
the equations of state applied in the presented example for the
types of loading present in the various service phases. The
equations of state are formulated separately for each characteristic
interspace. Four characteristic interspaces were assumed,
determined by the axis of symmetry and the position of the fixed
bearings and the assembly bearings (Fig. 4).

Distributed load
The basic system of differential equations of a beam with
distributed load has the form (6):

=0, ¢=—, M'=0, O'=— (6)

where: y — deflection, ¢ - deflection angle, M — bending moment,
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QO — transverse force, ¢ distributed load.

The point conditions of the state variables are to be formulated
for these equations, the number of variables being equal to the
product of the number of equations and the number of
characteristic interspaces.

Concentrated loads

When the concentrated loads occur within the limits of
characteristic interspaces, then the beam is to be described using
the basic system of equations (6), the value of the concentrated
loads being accounted for in the conditions of state variables. If, in
the assumed model of concentrated loads, the loads occur within
the characteristic interspaces, then the basic system of equations is
reduced to the first three equations of the system (6), in which the
transverse force Q is expressed analytically. These equations are
supplemented by an adequate number of point conditions.

Geometrical loads

In the analysis phase considering the geometrical loads, the beam
can be described by the basic system of equations (6), taking into
account also the distributed loads, if they occur at that phase. The
geometrical loads are considered in the form of determined
dislocations of bearing points.

Slab pretensioning

The equations describing slab pretensioning are the two first
equations of the basic system of equations. The bending moment
is expressed analytically, including the unknown bearing reactions
and the tensioning force. The tensioning force function can be
determined applying algorithms used in the design of pre-stressed
structures. The unknown bearing reactions are considered in the
optimization problem as control parameters, which are then
determined by formulating additional point conditions in the form
of state variable points and global equilibrium conditions.

Concrete shrinkage

In that case, as in the case of pretensioning, formulated are the
first two equations of the basic system of equations, in which the
bending moment is analytically expressed. The bearing reactions
due to shrinkage in statically indeterminate systems are included
in the optimization problem as control parameters, whereas the
force caused by shrinkage is being determined assuming flat cross
sections and the balance of forces.

Thermal loads

Thermal loads are accounted for by applying the same equations
as in the case of concrete shrinkage, replacing the shrinkage force
by the force due to the temperature difference between the steel
part and the concrete one, assuming the sense of the force proper
for the actual situation.

Load combinations

In cases when combinations of forces are to be considered in
optimization, then the state equations shall be formulated
separately for each type of loading at the step of formulating the
constraints. Selection of the most disadvantageous load
combination is done applying the maximum or minimum function.
Such approach leads in most cases to a smaller number of state
equations.

Moving loads

Moving loads can be considered in the optimization process
analyzing a finite number of load settings and selecting the most
disadvantageous moving load setting at the step of formulating the
constraints. This method can be used in the case of small objects.
In the case of multi-span bridges, a smaller number of equations is
required by the method, which leads to the determination of the
envelope of bending moments. That method was also used in this
example. The envelope of minimum moments and of maximum
moments at the supports is determined by considering 2n-2
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positions of the moving load (# = number of spans), while the
envelope of maximum span moments is reached using the
influence lines of support reactions determined in the optimization
problem.

Concrete creeping

In order to take into account the creeping of concrete at assembly
states, the method of the equivalent modulus of elasticity was
applied, modifying the Young's modulus of concrete according to
its age. At the service states, the Trost method was applied, which
made it possible to determine the changes in the sectional
reactions in the cross section in the steel and concrete parts during
the service life in a statically determinate system. In the
optimization problem two additional state equations were
introduced, which enable determination of the coefficients in the
basic equation of the force method in a single degree statically
indeterminate system.

This way was used to determine 79 state equations together
with point conditions and additional conditions considering the
control parameters. The description of the state variables is
presented in Table 1 [2].

Tab. 1. Description of the state variables
Tab. 1. Opis zmiennych stanu

State variables in the analyzed
design situations
£lzs|2z|8,
S |2=|s Z 2
% EX-AE § 28 S | Sip 4
8| <F|=E|E
Assembly stage [ N n V3 Y4
Vs Y6
Assembly stage I1 Y7 8
Yo | V1o
| M2
Assembly stage ITI
N3 | Vs
s | Ve
Assembly stage IV N7 | Mg
Y9 | Y20
Ya1 | Y22
Assembly stage V Y23 | Voa
Y25 | Vae
ql Yo7 | Yas | Y29 | V30
Service stage
with truck load q2 Y31 | V32 | V33 | V4
q an pedesrian B | s | Ve | Va1 | Yas
crowd p
a4 | Y39 | Yao | Va1 | Va2
K1 Va3 | Vaa | Vas | Vae
K2 Va7 | Yag | Va9 | V50
K3 Y51 | Y52 | V53 | Vsa
Service stage
with truck K K4 Yss | Vse | V51 | V58
K5 Y59 | Yeo | Ye1 | Ve2
K6 Y63 | Vo4 | Ves | Veo
K7 Y61 | Y68 | V6o | V70
Creeping stage Y| Yn2
Shrinkage stage Y73 | Vi
Thermal load T1 Yrs | Ve
stage T2 | y77 | V18
Volume Y19

3.5. Formulating the optimization problem

The objective optimum solution consists in determining the
cross section of the steel girder, in which the value of the objective

function is minimal. The objective function selected in the
presented example is the volume of steel used to make the plate
part of the composite girder. Precisely this was why the state
variable Voo™ ¥V, and the following state formula [4] was applied:

70 =A> ¥79(0)=0 7

where: a — designation of the steel part of the composite girder
without reinforcement.

Applying that variable made it possible to reduce the
optimization problem with the general Lagrange functional to the
Mayer-type problem (1), (2).

The state equations, constraints, and the optimization objective
function constitute parts of the indispensable formal structure
enabling the application of the maximum principle, which
formulates the necessary condition of optimization.

1. The optimized girder is described by the system of first order
differential equations

yi = fily(x,ux),x], i=1+79 (n,=79) ®

2. The admissible spaces and the constraints were determined and
formulated for the state variables and the decision variables

gy ux),x]20, s=1+8 (n,=8) ®

3. The Hamilton function in the analyzed problem has the form

H =0 fly(x),u(x), x]+ pgly(x), u(x)] (10)

4. The system of conjugate variable equations has the form
Zi afk(y,u) Z g, (y,u) ) i=1+79 (11
s=1 yl

5. The system of equations following the condition of the
Hamilton function maximum has the form

0o Zl 6fk(yJU) Z g, (y.u) (y,") =1+3 (n,=3) (12)

J

The optimal solution is found by way of the differential-
algebraic system of equations (7), (9) and (10), respecting the
following exceptions:

1. If a decision variable assumes values from the boundary of the
defined admissible space, then the equation formulated with this
variable is excluded from the system of equations (12).

2. When one of the constraints (9) is active, then the respective
equation (12) is excluded from that system and is replaced by
the following equation:

g,[y(x),u(x),x]=0, m— number of the active constraint (13)

3. The problem can be solved only when the number of cases
described under item 1 and 2 does not exceed the number of
decision variables.

The number of constraints in the presented problem is much
higher than the number of equations of the kind (12), which
increases the probability that circumstances can arise at which
there is no optimal solution.
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3.6. Numerical solution

Applying the maximum principle strictly, the optimization
problem was reduced to a multi-point boundary problem, which
was solved using the software Dircol-2.1. Along this way, the
following clauses were determined:

— 79 state variables,

— 79 adjoint variables,

— 3 decision variables,

25 control parameters (23 bearing reactions and 2 force
equation coefficients),

8 Lagrange multipliers related to constraints of the state
variables,

— 135 constants, responsible for the jump of state variables at
support points and at the symmetry axis,

144 constants, responsible for the jump of adjoint variables at
support points and at the symmetry axis,

5 constants responsible for the jump of Hamilton function at
support points and at the symmetry axis.

Altogether 478 magnitudes were assigned. A solution was
found, which satisfies the necessary conditions of optimality
(Fig. 5,6, 7).
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Fig. 5. Optimal thickness of the bottom flange of the plate girder — decision
variable u [m]

Rys. 5. Optymalna grubos¢ dolnego pasa blachownicy — zmienna
decyzyjna u; [m]
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Fig. 6.  Optimal width of the bottom flange of the plate girder — decision
variable u, [m]

Rys. 6.  Optymalna szerokos$¢ dolnego pasa blachownicy — zmienna
decyzyjna u, [m]
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Fig. 7. Optimal thickness of the plate girder web — decision variable 3 [m]
Rys. 7. Optymalna grubo$¢ $rodnika blachownicy — zmienna decyzyjna u ; [m]

The computations carried out using the software Dircol-2.1
shall be preceded by loading the starting values of the state
variables, which are automatically corrected in the subsequent
steps of iteration until achieving the solution, which satisfies the
necessary conditions of optimality. Often, depending on the
starting values, different solutions are achieved. From these
solutions those ones shall be selected, the result of which is
characterized by the minimum value of the objective function.
There never exists, however, sureness that no better solution is
possible.

PAK vol. 55, nr 6/2009

In the presented example, the same solution was always
achieved when different starting values were assumed. It can
therefore be supposed that considering the given constraints and
adopted assumptions this is the only, i.e. the optimal solution
respecting the minimum steel volume criterion.

The figures 5, 6, 7 present the elements of the cross section of
the plate girder, determined by the optimizing process. Both
dimensions of the bottom flange are increasing at the zone of the
intermediate bearing and in the span sections. The third
determined dimension — the web thickness - does not undergo any
changes practically and achieves the minimum value of the
admissible range of variability.

On sections where all decision variables achieve values of the
limit of the admissible range (0 ~ 12 m, 24 + 51 m, 69 + 84 m), all
equations (12) were excluded from the optimization process.

On sections where two decision variables achieve values of the
limit of the admissible range (12 = 15 m, 21 + 24 m, 96 + 105 m),
two equations of the system (12) were excluded. If on these
sections one of the constraints g is active, then also the third
equation is excluded from the optimization process, and that
variable, the values of which are not situated at the limit of the
admissible range, is determined by the active constraint. The
diagrams of constraint functions, which are not included in this
presentation of the paper, show that only the first constraint is
active on some intervals. They are the intervals 15 +21 m, 51 + 69 m,
and 84 + 105 m.

On sections where only one decision variable achieves a value
of the limit of the admissible range (15 + 21 m, 48 + 72 m, 84 +
96 m), one equation of the system (12) is excluded. One of the
subsequent two equations is excluded when the first constraint is
active. When only one equation is excluded from the system of
equations (12), then the variables, the values of which are not
situated on the limit of the admissible range, are determined by
these equations. Whereas, when due to the activity of the first
constraint of the system (12) the second equation is excluded, then
the variables, the values of which are not situated on the limit of
the admissible range, are determined by the active constraint and
by one of the equations (12). It is however impossible to find out,
which decision variable is affected directly by the activity of the
constraint. The above dependencies in the analyzed problem are
presented in form of the structure of control in Table 2.

Tab. 2. Structure of the optimal solution
Tab. 2.  Struktura rozwigzania optymalnego

Przedziat Uy Us us
0+15 U min U 3 min U 3min
12+15 U | min Usopt <= (12.2) U 3.min

g =0
15+21 (U 1.opt > U 20pt) <= min
o> o {(12.1)u(12.2) e
21+24 U | min Uzopt <= (12.2) U 3.min
24 +51 U | min U 3 min U 3min
& =0
51+ 69 (U 1.0pt 5 U20pt) <= min
o> o {(12.1)u(12.2) s
69 + 84 U 1 min | U2 min U3 min
=0
84+ 96 (U 1opt » Uropt) <= & U3 min
(12.1)u(12.2)
96 + 105 Ui <=8 =0 | U 2 max U 3 min
4. Summary

The theory of optimal control can be applied in problems of
optimization of building structures. The paper presents in detail an
example of optimizing a girder with composite cross section, in
which various loading conditions were considered, and a complex
structure of the optimum solution was proposed, in which the
multipoint boundary problem is convergent. The solved practical
example confirms the possibility of applying the optimal control
theory in optimal structure design.
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lub dotaczone w osobnym pliku (w formacie TIF).

Wszystkie materiaty:

« artykut (w formacie DOC),

 notki biograficzne autoréw (w formacie DOC),

 zdjecia i rysunki (w formacie TIF lub CDR),

prosimy przesyta¢ w formie plikow oraz dodatkowo jako wydruki na biatlym papierze (lub w formacie PDF) na adres e-mail:
wydawnictwo@pak.info.pl lub poczta zwykta, na adres:

Redakcja Czasopisma
Pomiary Automatyka Kontrola
Asystent Redaktora Naczelnego
Agnieszka Skorkowska
ul. Akademicka 10, p.21A
44-100 Gliwice

Wszystkie artykuty naukowe sa dopuszczane do publikacji w czasopi$mie PAK po otrzymaniu pozytywnej recenzji. Autorzy materiatow
nadestanych do publikacji sa odpowiedzialni za przestrzeganie prawa autorskiego. Zaréwno tres¢ pracy, jak i wykorzystane w niej
ilustracje oraz tabele powinny stanowi¢ dorobek wlasny Autora lub musza by¢ opisane zgodnie z zasadami cytowania, z powotaniem si¢ na
zrédio cytatu.

Przedrukowywanie materiatow lub ich fragmentow wymaga pisemnej zgody redakcji. Redakcja ma prawo do korzystania z utworu,
rozporzadzania nim i udostgpniania dowolng technika, w tym tez elektroniczng oraz ma prawo do rozpowszechniania go dowolnymi
kanatami dystrybucyjnymi.



