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Abstract

Design of the iterative learning control (ILC) for robot manipulator with 2
degree of freedom based on model of the robot approximated by neural
network is presented. The robot model has form of the Lagrange-Euler
equation and neural network was trained to estimate the model parameters.
Then, the estimated model was used for synthesis of ILC.

Keywords: neural model of industrial robot, iterative learning control.

Synteza iteracyjnie uczacego sie sterowania
prostego robota na podstawie neuronowego
modelu robota

Streszczenie

W pracy przedstawiono syntezg iteracyjnie uczacego si¢ sterowania dla
robota o 2 stopniach swobody na podstawie modelu aproksymowanego
przy pomocy sieci neuronowych. Model robota ma form¢ rdéwnan
Lagrange’a-Eulera, ktorego nieliniowe funkcje zostaly wyznaczone przez
odpowiednio wytrenowana sie¢ neuronowa. Aproksymowany model zostat
nastgpnie wykorzystany do syntezy regulatora.

Stowa kluczowe: model neuronowy robota przemystowego, iteracyjnie
uczace si¢ sterowanie.

1. Introduction

The robot manipulators have complex nonlinear dynamics that
might make accurate and robust control difficult [6]. It is very
hard to obtain the exact mathematical model of robot, the
nonlinear model structure is well known but the parameters like
inertia momentums are unknown. To overcome this problem, we
have used the neural network to approximate unknown nonlinear
functions in model of robot arm dynamics [7, 8].

The ability of neural network (NN) to approximate nonlinear
functions and to learn through examples makes it the main tool in
many disciplines, including robot control [11]. Many researchers
have designed NN controllers in robot motion control with
substantial success but a few of them have used NN for
identification tasks [10]. In this paper, we consider the design of
NN in order to approximate nonlinear functions of the robot. It
should be underlined that the design of NN doesn’t require the
exact knowledge of functions that describe the model.

In the last two decades, a great deal of progress has been made
in the research of ILC, e.g. [3, 9]. Several design methods were
proposed based on conventional control system design principles.

We present in this paper a synthesis of advanced ILC of robot
arm based on robot mathematical model whose parameters are
approximated by trained neural network. The structure of the
discrete-time NN model has been designed based on the
Lagrange-Euler equation.

2. Mathematical model of robot

The mathematical model of robot can be represented by the
discrete time model derived from the Lagrange-Euler equation
[1, 2] as follows:

yk+D)=2yk)-y(k —1)—T;Mfl[y(k)]{D[V(k),y(k —DI+Gly (k)] -7(k)}
M

where yeR” is the vector of joint position, r7eR" is a vector of

generalized torque, My (k)]eR"™" is inertia matrix,

D[y (k),y(k —=1)]e R" is a vector of Coriolis and centrifugal

forces, G[y(k)]eR" is a vector of gravity loading, k is

a discrete time and 7, is sampling time, 1=kT,.
The above model can be also presented in the following form

Yk +1)=2p (k) =y (k =)+ A [y (k).y (k ~D]+B, [y k)]+C, [y (F)]e(k)
(2)

where
A, =T Ty (k)IDLy (k). y (k = 1]

m

B =-T>M [y (k)IGLy (k)]

m p

C, =T M [y (k)

m

Our purpose is to approximate the unknown nonlinear
parameters of 4,,, B,, and C,, in model (2) using neural network.
The presented model (2) can be rewritten in state space form as
follows
x(k+1)=Ax,k)+B(x,kuk)

3)
y(k)=Cx (k)
where
x(k):[ v (k) }{xl(k)}
y(k=1)] |x,(k)
A(x,k):[zy(k)—y(k—1)+Am(k,k—1)+Bm(k)]
X, (k)
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B(x,k):licmo(k)}, c=[I o]

and /e R™" is identity matrix , 0e R"" is zero matrix.

3. Neural model of robot

In this work, we setup the parameters of discrete time equation
(2) for two degree of freedom robot, »=2, with revolute joints
[10]. These parameters can be estimated by one-hidden layer
feedforward neural network (FFNN) shown in fig. 1. The FFNN
has been divided into four sub-networks. Every sub-network has
two layers: the hidden layer has nonlinear neurons (NL) and
output layer has linear neurons (L). The number of neurons in
hidden layer was set to 4 neurons while the number of neurons in
output layer was equal to the number of elements in vectors Ay,
By, Cy and Cyy, respectively 2,2,2,2. The presented structure of
the neural network was chosen after a number of experiments.

(k)
(k)

Fig. 1.  The structure of feed-forward neural network (D is memory unit)
Rys. 1. Struktura sieci neuronowej feed-forward (D jest elementem pamigci)

The neurons in the hidden layers are described by the
hyperbolic tangent function

eZv _6721/
z2=f0V)= 55— “@
e’ +e
where
v=2Xw,x, +b %)

i=1

and x;, w;, b, z are input signals, weights, bias and output of the
neuron, respectively.

In the output layers, the neurons are described by linear
function

z=f@W)=v (6)

We have assumed that the input signals to every layer are
connected with all neurons in this layer. Input signals to the
network is y(k).

The performance function for learning of the neural network
was selected as the sum of squared error, then, the conjugate
gradient method [4, 5, 7] was chosen for learning of the NN
oft-line.

1 m
F=—%
2

k=1j=1

M=

[y, (k) =y, (T ™

where y, € R " isan output vector of the network, £ is a number

of the training pattern and m is the length of learning data.

PAK vol. 55, nr 3/2009

4. lterative learning control of robot

The ILC algorithm may be briefly described in the following
way: given nonlinear state space model of robot in discrete time
(3) can be presented in the state-space as follows

x(k +1,i) = A(x, k, i) + B(x, k, )u(k, i)
y(k,i) = Cx(k,i)

®)

where i denotes the iterative learning iteration. A system whose
dynamics propagates along two independent directions is known
as 2-D system [3]. One process is described by variable £ which
represents the discrete-time and the second process is described by
variable i which refers to the learning iterations.

Then, the general ILC rule can be given as follows

u(k,i+1) =u(k,i)+ Au(k,i) ©)

where Au denotes updating of the control input. Thus, (8) and (9)
describe a 2-D model of ILC process. In ILC the both dynamical
processes are independent of each other.

Then, assume that we have given the reference output in finite
discrete time interval k€[0,N], where N is an integer determined
by working task specification. Our task is to find control input
such that robot output y follows the given reference output y,. In
the ILC after several learning iterations, u(k.,i) is modified such
that y(k) = y,(k), in general e(k,i) = y,(k) — y(k,i) —> 0 if i—>o. Fig.
2 shows the general structure of ILC using 2-D descriptions, the
robot is the controlled system described by (8).
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Fig. 2.  Flowchart of ILC operation
Rys. 2. Schemat dziatania ukfadu iteracyjnie uczacego si¢ sterowania

Based on the state space model (8), the time-variable learning
control rule can be presented, [9], as follows

w(k,i)=u(k,i—1)+K (x.k,i)y,(k)-yk,i)]
+K (v kDA (ki) = Ak, -] (10)
+K (x kD (ki —1)
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where matrices of learning gain K, K, and Kj are calculated the
following way

K (x.k)=[CB(x.k.,i)]"
K, (x,k,i)=-K (x,k,i)C (11)
K (x.k)=K (x.k,i)CB(x.k.,i-1)

Since usually robot model parameters are unknown we have
used the trained FFNN as a part of control system. The FFNN
calculates the robot parameters (2) which are then used in model
(8) for calculation of the ILC learning gain (11).

In this case, the estimated matrices of the nonlinear state space
model (3) of robot can be rewritten as follows

2y(k)—y(k =D +A4, (k.k -+ B, (k
A(x’k):[y() Yk =D+ Ay (kk =1+ By ( )}’

x (k)

B(x,k)z{cfvo(k)} and C =[I 0]

where 4y, By and Cy are robot model parameters approximated by
FFNN.

5. Computer simulation

In order to learn and test the designed neural network, the data
for learning and testing of NN were generated by simulation of the
2-DOF PUMA robot [10], whose model parameters (1) are
described as follows

MLy (k)] :|:p1 +p,+2p,cos(y, (k) p,+p, cos(yz(k))}

P, +pycos(y,(k)) r,

dyy ==p3y Gk =Dy, (k =Dsin(y, (k) = p3y, (k =DIy,(k =D+, (k =DIsin(y, (k)

dyy = pay i (k =Dsin(y, (k)

dpy
D[y (k),y (k =1)]=
)|
Gly (k)] :{IM cos(y (k) +ps cos(yl(k)+y2(k))}
pscos(y(k)+y,(k))

The coefficients p; of robot are

P:[Pl Py P3 Py p5]
=[1.6 05 06 3.7 12]

The NN was learned using the conjugate-gradient method [4, 5,
7]. Input signals to the network were robot position
X={(1),...,p(m)} and robot torque U={n?2),...,o(m)} while
Y.=0.(3),...y.(m)} was NN output and Y={y(3),...,y(m)} was
desired output. The learning trajectory (desired) of the robot
output is described by the following formula

y =4 [l—cos(;)t )J (13)

10
where 4=-— [°rad] is the amplitude, o=27 and the period
Vs

T=18.8 [sec]. The neural model output had to follow the above
given trajectory in time =5 [sec] and sampling time 7,=0.01 [sec].
Task of the NN learning was to find the network parameters
such that the network output signal Y,~Y. This can be achieved by
calculating of the error between the actual and desired outputs
after each learning iterations in order to update the weights of NN
according to the conjugate gradient learning method rule [4, 5, 7]

oF (h)

wh+)=w(h)+n
ow (h)

(14)

where 4 is learning iterations and 7 is learning parameter and was
set arbitrarily to 0.003. The obtained results for the desired
trajectory and NN output signals are illustrated on Fig. 3.

ynl, yl[rad]
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N

yn2, y2[rad]
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=]
n

t[sec]

Fig. 3.  The desired trajectory y and the NN output y, (Learning stage)
Rys. 3. Zadana trajektoria y i wyjscie sieci NN (nauka)

The maximum absolute errors between the desired trajectory
and NN output are given in table 1.

Tab. 1. Maximum absolute error between desired trajectory y and NN output y,
(learning stage)
Tab. 1. Maksymalne btedy absolutne migdzy zadana trajektoria y oraz wyjsciem

NN y, (uczenie)
Joint number 1 2
Error [°] 0.0320 0.0361

After the NN was trained it was incorporated within ILC
system, the reference trajectory at each joint for control
calculation was according to [10] as follows

3 .
V. :A;sin ?’t (15)
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where 4= &
V4

[sec]. The frequencies are @,=1.0 Hz, @,=2.0 Hz, and o;=4.0 Hz.
The robot arm has to follow the given reference trajectory in time
=5 [sec] with sampling time 7,=0.01 [sec], i.e. N=500 time
instants.

The control system was then tested to follow the given
reference trajectory. The obtained results for robot trajectories,
reference trajectories and control signals are presented on Fig. 4
and 5.

[*/rad] is the amplitude and the period is 7=2.5

t[sec]

t[sec]

Fig. 4. The reference trajectory y, and the actual robot position y
Rys. 4. Sygnat zadany y, i sygnat pozycji robota y

s0

ul [Nm]

12 [Nm|

Fig. 5. The control signal 7; for robot joint no. 1 and 2
Rys. 5. Sygnat sterujacy 7; przegubu 1 oraz 2 robota
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The absolute control errors between the reference trajectory and
actual robot trajectory are given in table 2.

Tab. 2. Maximum absolute control error between reference trajectory y, and robot
output y

Tab. 2. Maksymalne absolutne bledy sterowania migdzy sygnatem zadanym y, oraz
wyjsciem robota y

Joint number 1 2

Error [*]x10? 0.210 0.500

It is easy to find that the algorithm of ILC works efficiently
although the robot parameters are identified by the neural network.
In the presented results, we found out that the maximum absolute
error for joint no. 1 and 2 not exceed 0.00021 and 0.0005 [°],
respectively, and, the satisfactory quality control was obtained
after three learning control iteration (i=3).

6. Conclusion

The design of iterative learning control for 2-DOF Puma robot
based on model in the form of Lagrange-Euler equation which
parameters were approximated parameters obtained by trained
FFNN was presented. The satisfactory control has been obtained
in a few learning iterations.

However, we have encountered some problems during NN
learning and testing such as the length of time required for
learning, and selection of the NN structure and learning method to
do this task properly. One can expect more problems for control of
robot with more degree of freedom. Thus, more research is
required in order to increase the efficiency of learning algorithms
and simplify the NN structure and at the same time without loose
of specified performance level.
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