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Abstract

Pole placement feedback controller for linear continuous-time system with
dead-time is presented. Properties of the closed loop systems with the
controller are discussed. Necessary and sufficient conditions for the
controller existence are given. Numerical example illustrates behavior of
the control system with proposed controller.
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Przesuwanie biegunéw ciagtego uktadu
liniowego z opoznieniem transportowym

Streszczenie

Przedstawiono syntez¢ regulatora przesuwajacego bieguny
wielowymiarowego ciaglego ukladu z opdznieniem transportowym.
Przedyskutowano wtlasnosci uktadu zamknigtego z proponowanym
regulatorem. Podano warunki konieczne i dostateczne dla istnienia
regulatora. Przedstawiono przyktad liczbowy ilustrujacy dziatanie uktadu
regulacji z proponowanym regulatorem

Stowa kluczowe: uklady z opdznieniem transportowym, uktady liniowe,
przesuwanie biegunow.

1. Introduction

Time-delay systems one meets in biology, chemistry,
economics and also in engineering. The continuous-time models
of time-delay system are in the form of differential-difference
equations. Their analysis is rather difficult because time-delay and
derivative have quite different nature, the equation can be
alternatively considered as infinitely dimensional functional
differential equation. Review of most important results concerning
analysis and synthesis of time-delay control systems one can find in [1].

The most important for engineers are models with
transportation delays (dead-time, input delay). Unfortunately,
there is no simple method for controller design for system with
dead-time, one can easily check that in classical textbooks for
control engineers the control of time-delay systems is omitted or
reduced to PID type control, e.g. [3, 4, 5, 6, 7]. A well known
approach for design of controller for dead-time system was
proposed in [2]: adding to the control system so called Smith’s
predictor one can design controller like for system without dead-
time. In this paper we present a controller for pole placement for
system with dead-time described by linear continuous-time model.
The proposed controller is in a form of classical state feedback,
analogous to systems without dead-time.

Organization of the paper is as follows: in section 2 the
considered problem is presented. In section 3 the controller design
is proposed, then in section 4 control system with disturbances is
also considered and in section 5 robustness of the proposed control
system is discussed. Next, in section 6, numerical examples are
presented. Finally, concluding remarks are given.

2. Problem formulation

Given multivariable system with dead-time (transportation
delay, input delay) described by linear continuous-time model

X=Ax+Bu(t-T,) o
y=Cx

where xeR" is a state vector, ueR" is an input vector, yeR’ is an

output vector, 7, denotes dead-time, and A, B and C are real

matrices of appropriate dimensions.

Then, the considered problem can be formulated as follows:
find a feedback controller for dead-time system (1) such that the
closed loop system will be asymptotically stable. Moreover, it is
desired that the closed loop system will have required poles.

Model (1) is basic one for control engineers. Many industrial
processes can be described by this model. Therefore, synthesis of
stabilizing controller for system described by the model is rather
important.

3. Controller design

If the pair (C,4) is observable one can design state observer for
system (1)
v=Gv+Hu(t-T))+ Ly (@)

where veR" is an observer state vector, such that

lim(v-x)=0 (3)

Indeed, calculating observer error e(f) = v(f) — x(¢) one obtains
é=v-x=Ge+(G—A+LC)x+(H-Bu(t-T,) 4)

Clearly, if observer matrices are calculated the following way
G=A4A-LC and H=B 5)

we have
e=Ge

Hence, it is obvious that if matrix L is chosen such that all
eigenvalues of matrix G have negative real part condition (3) will
be satisfied.

Next, using estimate v(¢) of state vector x(¢) one can calculate in
time ¢ estimate x(z+7y|f) of state x(++7,) based on model (1) as
follows

+T,
x(t+ Y})‘t) =e' () + J.eA(”T"”)Bu(T ~T)dr =x(t+T,)+e"™e(t)
t

(6)

One easily notes that x(#+7|f) — x(z+T,) for t - oo if observer

(2) is properly designed. It is also easy to see that x(++7y|f) is
a solution of the following system

%, =Ax +Bu(t-T,) 7

with initial condition x(¢)=v(¢), in time t+7:
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x(t+T [ =x,(t+T,)-
Next, applying to system (1) the following control input
u(t)=Kx(t+T,|) = K[x(t +T,) +e""e(1)] )]

one obtains from (1) and (2)

)‘c_AOx BKt Aogy_ T OC
o17e @ v+H [x(£)+e" e( 0)]+L X

{A+BK O}H m p ©)
= + Ke™’e(t-T,)
LC+HK Glv H

. x| |x
Then, after state transformation 7, { }:{ } where
v e

I 0 A
T = and 7 '=
-1 T ¢ 11

we obtain the following equation of the closed loop control system

X A+BK Olx| |B| .,
= +| |Ke"e(t-T,)
é LC+HK—-A-BK+G Gle 0

it (10)
:{A+BK 0}{1_{3[@ }e(f—TO)
0 Gle 0

It is well known that if the pair (4,B) is controllable one can
calculate matrix K such that all eigenvalues of matrix Ax =4 + BK
have negative real part. In this case, we see that all eigenvalues of
the closed loop system state matrix have negative real part. It is also
easy to note that the observer error e tends to zero independently on
system state vector x. Thus, system state x tends to zero, too.
Therefore, the whole closed loop system is asymptotically stable.

By appropriate choice of matrices K and L one can choose
eigenvalues A of matrix A¢ and g of matrix G, i.e. eigenvalues of
the closed loop system state matrix, eigenvalues deciding about
the closed loop system properties similarly as in linear systems
without time-delay — e(+T7;) in (9) and (10) can be treated as
disappearing disturbance. For the reason we call the proposed
control algorithm pole placement of the dead-time system,
however, real eigenvalues A, of the closed loop system are slightly
different than A chosen for calculation of the control gain matrix
K. Nevertheless, it is easy to see that if observer error tends to zero
then eigenvalues A4 become real system poles with respect to
system behavior. It can be also noted that eigenvalues u are real
roots of the characteristic equation and they are real system poles

A+BK 0] |0 BKe'™
det| Is — + ¢ e =0 for s=u (11)
0 G| |o 0

Finally, one simple finds that the asymptotically stable closed
loop system (9) for t—>o tends to the following system without

dead-time
X A+BK 0| «x
v| |LC+HK G|v
where eigenvalues of the state matrix are equal to 4 and .
After one notes that
+T, Ty

J‘eA(’*TO*T)Bu(T -T))dr = IeA’Bu(t -7)dt

t 0

we can summarize presented investigation in the following theorem.
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Theorem 1

If the pair (4,B) of dead-time continuous-time system (1) is
controllable and the pair (C,4) is observable then the control
feedback

u(f) = Kw(f) (12)
where
w(t)=e""v(t)+ je“Bu(t—r)dr (13)
and
v=Gv+Hu(t-T,)+Ly (14)

and gain matrix K is calculated in such a way that all eigenvalues
A, i=1,...,n, of the matrix 4x =4 + BK have negative real part,
matrix L is calculated in such a way that all eigenvalues
i=1,...,n, of the matrix A; = A4 — LC have negative real part, and
G = A;, H= B, stabilizes the closed loop system (1) and (12).
Moreover, the closed-loop control system for # — o tends to the

following one
i) [ A+BK 0Tx
v| |LC+HK G|v
X
y=[C 0]
\4

which have poles in given A; and g, i=1,...,n.
Remarks

1.1t is easy to see that calculation of matrices K and L, G and H,
i.e. synthesis of control gain and state observer, can be done
independently.

2. The controller can be calculated similarly as in the case of the
system without dead-time.

3. The controller consists of state observer (14) and state predictor
(13).

4.0ne can calculate estimate w(f) of state x(¢#+7,) using for
instance the following rectangular approximation of integral

(12)

w(t)=e"Tv(r)+ ie“Bu(z —n)dr~ (")) + T,,hi(e“v ) Bu(t—iT,)

0

where T), is a sampling time and 4 = % ,hel.
P
5. Stability of the closed loop system (1) and (12) doesn’t depend
on time delay Ty,
O

4. Control system with disturbances

Now consider continuous-time system (1) with unmeasurable
disturbance
X=Ax+Bu(t—T,)+ Ez(t
(1=T,)+ E=(1) s
y=Cx+Fz
where zeR? is an unmeasurable disturbance vector and E and F
are real matrices of appropriate dimensions.
In this case using state observer (2) we obtain instead of (4)

é=v—%=Ge+(G—A+LC)x+(H - B)u(t-T,)+(LF —E)z=Ge+(LF —E)z
(16)

Obviously, if z doesn’t disappear then observer error e doesn’t
tend to 0.
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Next, calculating in time # estimate x(¢+7|f) of state x(¢+7;) one
has analogously to (6)

4T, T,

x(t+ T =e"v(t)+ J‘e‘“””Bu(T ~T)dr=x(t+T))- J‘e’“””Ez(r)dr +e'Toe(t)
t t
Ty

=x(1+T))- Ie/”Ez(t +o)dr+eTe(t)
0

(7)

Now, instead of (8) we apply to system (15) the following
control input

u(t) = Kx(t+T,|r) :K[x(t+To)— je“Ez(Hr)dHe“»e(t)] (18)

Then, analyzing the whole control system one obtains from (15)
and (2) similarly to (9)

LA T B con b motr s e s oot Ll © hces morel B
o170 @ v+H x(t)*a[e Z(t+7)dT+e e(t—U)JrL[er z]+Oz

A+BK 07 x| [B] .- Bl ™, E
- +| ke e(t-T,) - KJ'e Ez(t+7)dr+| |z
LC+HK G|v| |H H LF

0

(19)

From the above equation it follows that characteristic equation
of the system is the same as for system without disturbances.
Thus, the system is asymptotically stable. However, in the case of
not disappearing disturbance z neither state vector x nor observer
error e doesn’t tend to zero.

Thus, we can state the following theorem

Theorem 2

The asymptotically stable closed-loop continuous-time system
(1) and (12) is asymptotically stable independently of disturbances
acting on the system as in (15).

o

5. Robustness of the control system

Considering robustness of the closed loop control system we
have assumed that state observer (G,H,L) and gain matrix K are
calculated based on uncertain model (1) with (4,,,8,,,C,Tom) =
(A+A,B+Ap,C+Ac,Ty+Ap), ie. (G,H,L) = (GpH,,L,) and K = K,,.
In this case one finds observer error of system (1) as follows
e, =v,—x=G,e,+(A,—L,A:)x+Blu(t-T,,)—u(t—T))]+ Apu(t-T,,)
where G,=A4,-L,C,, and H,=B,,. Clearly, e, doesn’t tend to zero.
However, if x and u tend to zero for ¢ — oo then also e, tends to
Zero.

Then, calculating in time ¢ estimate x,,(+7;,|f) of state x(t+7p)
based on uncertain model (1) we obtain

t+T,,,
x, (1 + TOm‘t) = g nTom v, () + J'eA,,,(HTu”ﬁf)Bmu(T -7, Ydt
t

AnTom

=x(t+T))+e vm(t)—eAT“x(t)-t-zm(t,u)

where

4+, +Ty
z, (tu)= jeAm(FHTM 'B u(t-T,,)dr— J‘e"(H%)Bu(r -T,)dr
t t
T, Ty

= j[e”wam—eA’B]u(z—r)dr— je“Bu(z—r)dr
0

Tom
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It is easy to see that z,(t,u) — 0 if model (4,,,B,,,C,», o) tends
to system (4,B,C,Ty). It can be also noted that, similarly to (7),
Xu(t+To,|1) is a solution of the following system

'X.'ll = Amxu + B”Iu(t - Tl)m)
with initial condition x,,(¢)=v,,(¢) at time +T,,:
X, (4T, [N =x,(1+T,,).

Then, calculating control input
u(t)y=K, x, (t+ Tﬂm‘t) =K, [x(t+T))+ e o v, (1)— e x(f) + z, (t,u)]

where K, is a state feedback gain calculated based on uncertain
system model (4,,,B,,,C,,), we find analogously to (9)

1[4 o x][8B o A, 0
v 7lo 6, v, H oy [Kalx@+e™, (=T) = et =T )+ 2, (= Ty, u)]+ L Cx

m

A+BK, 0 x B AT, AT,
“lLcemk, G v, + ", K, le™my, (t=T))—e o x(t=T)) +z,(t=T,u)]
(20)

Since z, — 0 if model tends to plant then for small model
uncertainty, i.e. A ,ApAc,An = 0, magnitude of z,(7,u) is much
smaller than magnitude of u(7). Therefore, in this case, one can
assume that z,,(+T,u) is a small structural disturbance additive to
control input.

We say that z,, is a structural disturbance since it depends on
system input and influence closed-loop system dynamics if
control input does it. However, for small model uncertainty its
influence is much smaller than the influence of control input and
therefore we can ignore this influence analyzing system
properties, like in the case u(k)=Kx(k)+K,x(k) one can omit term
Kyx(k) if ||Ky[[<<[|K]|.

From the proof of theorem 1 it follows that all roots of the
characteristic equation of closed loop systems (9) and (19)

BKe'™ |
e 0 (21)

HKe"™

A+BK 0] | —BKe
W(s)=det| Is — + ¢
LC+HK G| |-HKe'

have negative real part.
For small structural disturbance z, one can approximate the
characteristic equation of the control system (20) as follows

A+ BK, 0 _BK el BK e"nTon
W.(s)= det[[s —|: " :| + { n€ n€ o T

LC+HK, G, -H K, '™ H K, e

Since roots of the characteristic equation W,(s) are continuous
with respect to equation parameters 4, B, C, Ty, A, B, C,, and
Tom» We find that roots of the characteristic equation of control
system designed based on uncertain model (1) have negative real
part for small uncertainties if all roots of equation (21), i.e. poles
of control system designed based on certain model, have negative
real part. Henceforth, the control system with controller calculated
based on uncertain model is asymptotically stable with respect to
small system uncertainties.

Thus, one can formulate the following theorem.

Theorem 3

The asymptotically stable closed-loop continuous-time system
(1) with feedback control (12) is robustly asymptotically stable
with respect to small uncertainties in system and observer
parameters, delay-time and control gain.
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Remarks

1. Depending on system properties, e.g. stable or unstable plant,
and designed control system poles A and x small uncertainties
can be very small or quite big.

2. It is well known that usually one obtains larger stability margin
when negative real parts of the poles of the closed-loop system
are close to zero.

g

6. Examples

We illustrate the proposed controller considering system
described by the model (1) with dead time 7,=20 and

0.08 —0.04 0.25
A= . B= . C=[0 032]
025 0 0

It is easy to check that the pair (4,B) is controllable and the pair
(C,A) observable. The transfer functions of the system is follows

2 —20s 2 —20s
=005 —8541° 10 —2-04105+1°

It is easy to see that the system is a representation of the
unstable  oscillatory plant (3) with complex poles
51=0.0400+0.0917; and 5,=0.0400-0.0917,.

Then, there are presented in fig. 1 control system response of
the plant with controller calculated in such a way that poles A and
w1 of the system and observer were equal to —0.8927 and in fig. 2
with poles A of the system equal to —0.1015 (close to 0) and poles
1 of observer equal to —0.4218. Note, that we wanted to obtain
closed-loop system response without oscillations. There are also
presented control inputs to the system.

. S 0
In all simulations initial state of the plant was x(O):L 25}

which is a steady state of the system for #=1 and y=2, initial input
was u(f)=0 for 7€[-50,0), and initial state of the observer was
equal to zero: v(0)=0.

00 A R R B N
-50 0 50 100 150 200 250 300 350
[sec]

Fig. 1. Response of control system based on exact model of the plant with
poles close to —0.9

Rys. 1. Odpowiedz uktadu regulacji zbudowanego na podstawie doktadnego
modelu obiektu regulacji z biegunami w okolicy —0.9

It is easy to see that changing poles of the closed loop system
one changes the control time and also magnitudes of system
output and control input similarly as for system without dead-time.

One also easily finds that control system output is no aperiodic
in spite of the chosen roots A and u of the closed-loop system
stability polynomial. However, it can be shown that this occurs
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because the feed-back is realized based on state vector estimation
not exact value of the state vector. The estimation starts from zero
whereas initial system state is quite different than zero.

i i i i i
-50 Q 50 100 150 200 250 300 350
[sec]

1 1 1 1
150 200 250 200 350
[sec]

Fig.2. Response of control system based on exact model of the plant with
poles close to —0.1

Rys. 2. Odpowiedz uktadu regulacji zbudowanego na podstawie doktadnego
modelu obiektu regulacji z biegunami w okolicy —0.1

Then, we have used for controller calculation an uncertain
model (1) with 7,=22 and

0.06545 —0.03306 0.25
,, = , B, = , C,=[0 0.238]
0.25 0 0

It is easy to check that the pair (4,,,B,,) is controllable and the
pair (C,,,4,,) observable. The transfer functions of the model is as
follows

1.8 1.8
6—225 e—22x

G (s)= =
n(s) 121s* =7.925 +1

11°5* =2-0.36-11s+1

It is easy to see that model inaccuracy is equal to £10% of
transfer function parameters: gain, time constant, damping
coefficient and dead-time, whereas uncertainty of the transfer
function coefficients is up to 21% and the state space model
parameters up to 34%. Model has the following poles:
51=0.0327+0.0848; and 5,=0.0327-0.0848;. Differences between
the step responses of the system and model one can see in fig. 3.

Fig.3.  Step response of the plant and model used for control system design
Rys. 3. Odpowiedz skokowa obiektu regulacji i modelu obiektu regulacji
wykorzystanego do syntezy regulatora
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In fig. 4 there are presented control system response of the plant
and control input to the system. The plant was as before and
discrete-time controller was calculated based on uncertain model
for the system the same way as for the second case based on exact
model, i.e. roots of the matrix Ag,, = A4,, +B,K,, were equal to —
0.1015 (close to 0) and roots of observer state matrix G,, were
equal to —0.4218.

4 i i i i i i
-50 0 50 100 150 200 250 300 350
[sec]

Fig. 4. Response of control system based on uncertain model of the plant with
poles close to —0.1

Rys. 4. Odpowiedz uktadu regulacji zbudowanego na podstawie niedoktadnego
modelu obiektu regulacji z biegunami w okolicy —0.1

Finally, there are presented responses of the control system
designed based on uncertain model with unmeasurable disturbance
additive to control input: u(?)=u(¢)+0.2z(¢), fig. 5, and additive to
system output: y(£)=y(¢)+0.2z(¢), fig. 6, where z is a stochastic
random signal with normal distribution with mean equal to zero
and variance and standard deviation equal to one. There are also
presented control input and disturbance. Controller and observer
and system initial conditions were the same as for system without
disturbances.

i i i i i
-50 0 50 100 150 200 250 300 350
[sec]

uz

4 i i i i i i
-50 0 50 100 150 200 250 300 350
[sec]

Fig. 5. Response of control system based on uncertain model of the plant
with additive input disturbance and poles close to —0.1

Rys. 5. Odpowiedz uktadu regulacji zbudowanego na podstawie niedoktadnego
modelu obiektu regulacji z zakldceniem addytywnym do sygnatu
wejsciowego i biegunami w okolicy —0.1

From the presented examples we see that controller works very
well, according to assumption. It stabilizes the closed-loop system
with rather big dead-time in both cases, when design was based on
certain as well uncertain process model.

=TS

IS

i 1 1 i 1
-50 Q 50 100 150 200 250 300 350
[sec]

uz

4 i i i i
-50 0 50 100 150 200 250 300 350
[sec]

Fig. 6. Response of control system based on uncertain model of the plant
with additive output disturbance and poles close to —0.1

Rys. 6. Odpowiedz uktadu regulacji zbudowanego na podstawie niedoktadnego
modelu obiektu regulacji z zaktoceniem addytywnym do sygnatu
wyjsciowego i biegunami w okolicy —0.1

7. Concluding remarks

The controller for pole placement of continuous-time linear
system with dead-time has been presented. The controller is
simple, it is similar to respective controller for system without
dead-time. The main advantage of the presented controller is that
it gives ones possibility to design stable dead-time control system
in a simple manner like for system without dead-time. Moreover,
changing poles of the closed-loop system one can change
dynamics of the control system. Comparing with the known
controllers for systems without dead-time the proposed controller
is additionally equipped with predictor of the future system state
X(t+T 0).

The proposed controller can find practical applications,
particularly for systems with big dead-time. The control systems
with the controller is robust with respect to model uncertainties as
well system and measurement disturbances. It has nice property:
behavior of the control system tends to the behavior of a system
without dead-time. In many practical applications it could be also
important that one can easily design control system with aperiodic
system response.

Finally, it should be noted that the proposed continuous-time
controller can be difficult for real analogue realization, however
the discrete-time realization can be easily implemented on
microprocessor based controller.
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