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Abstract

The early detection of faults is critical if one wants to avoid the
performance degradation and damage to the machinery or the loss of
human life. Therefore, accurate diagnosis helps us to make a right decision
on emerging actions and repairs [1, 2, 3]. In this paper, a new way of
additive models and knowledge discovery data application for designing
actuator has been presented. The planned aim is the fault detection of the
control valve with a servomotor and a positioner (Fig. 2) based on the
received model. Used additive models (1) overcome the curse of
dimensionality and allow us to examine the predictor effects separately, in
the absence of interactions [8, 9]. The backfitting algorithm with
nonparametric smoothing techniques has been used for the estimation of
the additive model [8, 9, 10]. The results of the modelling and the fault
detection procedures have been presented. All research has been carried
out based on the example of a control valve for measurement tracks in the
boiler laboratory setup. Received results are satisfactory because the tests
detected all simulated faults. Therefore, it is an useful method for the
multivariate industrial process fitting and fault detection in the analyzed
structures.
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Zastosowanie addytywnego modelu regresji
dla potrzeb detekcji uszkodzen
zaworow regulacyjnych

Streszczenie

W pracy przedstawiono wykorzystanie addytywnego modelu regresji oraz
statystycznych technik eksploracji danych do stworzenia modelu zaworu
regulacyjnego. Pozyskana wiedza postuzyla do konstrukeji algorytmow
detekeji uszkodzen, a nastgpnie do oceny wrazliwosci na wystgpowanie
poszczegblnych uszkodzen. Badania przeprowadzono dla przyktadowego
zaworu  regulacyjnego na  podstawie danych laboratoryjnych
probkowanych na stanowisku regulacji poziomu wody w zbiorniku
walczakowym. Otrzymane wyniki sg zadowalajace, gdyz zaprezentowane
metody pozwolity na wykrycie wszystkich zasymulowanych uszkodzen.

Slowa Kkluczowe: urzadzenie wykonawcze, detekcja uszkodzen, model
addytywny, eksploracja danych.

1. Introduction

The detection of faults in engineering systems is of great
practical significance. In order to meet reliability requirements of
safety-critical processes, the modern control systems should be
equipped with mechanisms of fault detection, that is the indicators
of prohibited deviations from the normal behaviour in the plant or
its instrumentation like sensors and actuators [1, 2, 3]. For this
reason, the diagnostics and protection of processes are crucial. Of
equal importance are computer systems that aid operators in
diagnostics, or even automatically create a diagnosis.

In the automatic control industrial control systems, the
possibility of signals values acquisition exists. It allows us to
create models based on measured data and expert’s knowledge
about the object. With the growth of computer technology, new

possibilities have arisen in terms of storing data acquisition and
speed of their processing. The science of extracting useful
information from large data sets or databases is known as data
mining [4]. The key task of this discipline for diagnostic purposes
is the analysis of observational data sets, and how to find the
relevant information quicker and more accurately, which aids the
decision making about the recognition of changes of the state of
the process during its operation.

Control valves are an increasingly vital components of modern
actuator equipment [5]. Properly selected and maintained control
valves increase efficiency, safety, profitability, and help the
ecology. They are often used in very demanding conditions, which
makes their durability largely limited. Actuator faults often lead to
the process perturbations causing the product deterioration or the
performance degradation. Moreover, the process economy
requires that the number of breaks switch-offs and the service
costs were as low as possible. For this reason, the quick and
correct detection of the faulty valve facilitates the proper and
optimal decisions on the emergency and corrective actions and on
repairs.

The diagnostics of valves was usually based on the analytical
models or models based on fuzzy logic, artificial neural networks
and fuzzy neural networks [3, 6, 7]. For many systems, the model
study based on differential and algebraic physical equations was
either very difficult or almost impossible, and model parameters
identification yields further difficulties. Moreover, an increasing
number of input signals rapidly increases the computational costs
and number of rules, in neural network and fuzzy logic modelling,
appropriately.

2. Additive model

In this paper, an alternative technique which overcomes the
limitation of multivariate nonparametric modeling, has been
presented. This important class of flexible models arises in form
of additive models [8, 9]. Let us call the physical measurable
quantities influencing the process and resulting from the process
operation, the input and output signal, respectively. Considering
the structure with p > 1 input signals X,,X,,..,X,, and one

output signal Y , the additive model is defined by

Y=a+igoj(Xf)+g, 1)

=1

where error ¢ is a sequence of independent and identically
distributed random variables (iid) with the mean E (g) =0 and the

finite variance Var(e)=o". The @, s are unknown, arbitrary
univariate functions one for each predictor X, . Because all of the

unknown functions are one-dimensional, the difficulty associated
with the so-called “curse of dimensionality” is substantially
reduced. Functions ¢, s can be, for example, roots, logarithms or

trigonometric functions. Let us point that we do not assume that
the signals X, are independent [8, 10]. The additive model can be

nonlinear in relation to signals X, but it still is linear in relation
to signals @, (X;). Hence, since each variable is represented

separately, model (1) summarizes the contribution of each
predictor with a single coefficient, and provides a simple method
for predicting new observations. In practice, this means that once
the additive model is fitted to data, we can plot the p-coordinate
functions separately to examine the variables in predicting the
response. However, the above simplification leads to the fact that
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the additive model is almost always an approximation of the true
regression surface, but with the hope of its usefulness.

Let's notice that without making an additional assumption about
the constant in the model (1), there will be free constants in each
of the functions. In order to avoid the above nonuniqueness, we
need to impose the following conditions for all functions:

Elp,(X)]=0, @

or equivalently
EY)=a. 3)

Suppose we have a pair {(x,,y,);.,}., of a random sample,
where y, represent measurements of the variable Y and x; are
the # observed values of the variable X ;. Formally, the additive

model can be estimated by minimization of the residual sum of
squares, such as

n P
argmin,, ,, > (v, —a =Y 0,(x,)), “
i=1 Jj=1

which is the discrepancy between the data and our estimation
model. Thus, we avoid the necessity of estimation in the
multidimensional space. For more flexibility, relations between
output signal and input signals are fitted by the use of
nonparametric smoothing techniques like locally polynomial
smoothers or natural cubic splines [8, 9]. This smoothers are linear
smoothers based on n data points and have a single smoothing
parameter. In choosing the smoothing parameter, an automatic
selection was used by the generalized cross-validation or
a graphical method helping us to choose the appropriate value [8].

We want the functions to be fitted simultaneously so we need
the unconventional estimation methods of the additive model. One
of them is the iterative backfitting algorithm for which the
convergence to unigness and independent of the starting value
solution was proved [8, 9]. In order to avoid the lack of symmetry
between estimators in a given step of iteration, the symmetrical
version of backfitting algorithm was constructed, and convergence
to the same uniqness solution, as in the case of the usual
algorithm, was proved [9].

3. Fault detection algorithms

Model-based methods of fault detection use the analytical
relations in the form of process model equations. Figure 1 shows
a general diagram for the process model-based fault detection. The
relations between the measured input signals and output signal are
represented by a additive model of the process. Fault detection
methods then generate quantities called residuals », which are the
comparisons of the actual behavior of the monitored output y to
the behavior y,, predicted on the basis of the additive model. The
residuals are normally equal to zero. They become nonzero as
a result of faults. The residuals are then analyzed to arrive at the
diagnostic decision - symptoms of faults S are or are not present.

Process

Testing

Additive model the residuals

Fault detection

Fig. 1. The diagram of fault detection
Rys. 1. Schemat detekeji uszkodzen
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The detection performance of the diagnostic technique is
characterized by important and quantifiable benchmarks, like the
fault sensitivity and the reaction speed, that is, the ability of the
technique to detect faults of a reasonably small size, and with
a reasonably small delay after their arrival. Also its robustness,
i.e., the ability of the technique to operate in the presence of noise,
disturbances and modelling errors, is affected by the design of
detection algorithm [1].

The simplest possible detection algorithm is to compare each
observation of the scalar residual individually with the threshold
values. Symptom of fault is detected if diagnostic signal s(7;) is

equal to 1, i.e. when the threshold value K, or K, was exceeded
by the i-th residual:

0  when
s(r) =
1 when

K, <r<K,

<K, v r>K,

(&)

Alternatively, in an aim to make detection robust against
impulsive disturbances, a fault is declared based on the average of
the absolute residual computed over the sliding window. Value of
N decides how many samples are in the sliding window, and value
of k decides how far shift that window.

N-1
0 when K, SLZMM <K,
_ N 1=0
s(r) = | | . (6)
1  when th’k” <K, VF;VLIHI >K,

1=0

Let us notice that the choice of values N and k in the algorithm (6)
determines how the smoothing the trajectory of the process will
follow. For optimally fixed N, we chose the appropriate value k&
for maximizing the test sensitivity of faults.

The possibility of false symptoms generation also depends on
the selected thresholds size as the acceptance region of the
residual values. The threshold values for test (5) are obtained
based on the learning sample, i.e., on residuals from the normal
behaviour of process, as following:

K, =min{r} —o{r}

. Al @)
K, =max{r;} +o{r;}
where
(8)
for
_ 1
O E ©)

is sample standard deviation of residuals 7,.

In the case of test (6), the above threshold values are obtained
from the average of the absolute residual calculated over the
sliding window.

4. Actuator fault detection

The most common final control element in the industrial
process control is the control valve with a diaphragm-spring
pneumatic servo-motor and the positioner assembly [5]. The
diagram of the actuator with measurement signals is showed in
Figure 2.
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This valve is an air-operated device which controls the flow
through an orifice by positioning appropriately a plug. When the
air pressure (the output signal from a pneumatic controller) above
the diaphragm increases, the diaphragm deflects and the stem
moves downwards thus restricting by the plug flow of the fluid
through the orifice. When the air pressure goes down, under the
action of a spring the stem moves upwards, thus opening the
orifice.

Positioner

—| Transducer /
— DPressure

Controller
S e

Fig.2. The diagram of the control valve assembly with measurement signals
Rys. 2. Schemat zespotu wykonawczego wraz z opomiarowaniem

Let Z be the valve plug stem position, CV be the signal of the
control valve, Pl and P2 are water pressures in front of and
beyond the valve, respectively, and F is the flow of the fluid
beyond the valve.

4.1. Exploratory data analysis

All research has been carried out based on the example of
a control valve for measurement tracks in a boiler laboratory
setup, controlled by industrial IT control systems, with the use of
the R-project [12] designed to advanced statistical calculations.

To be useful for data mining purposes, the databases need to
undergo a preprocessing, in the form of data cleaning, data
transformation and identifying outliers [4, 9]. Moreover, the
monitored plant is usually subjected to random noise. Practical
experience shows that the residuals result with relatively large
variance due to noise and deviations between the process and its
model. Therefore, the signals must be filtered. In order to do it, the
finite impulse response of 2nd order FIR filter was applied [11].

In this paper we determined the actuator by the following
additive model:

Fo=a+p(CV )+ @ (CV, )+ (PL) + @, (Pl ) +

(10)
s (P2, ) +oy(P2 )+ &,
where ¢, , for 1=3,...,n, are iid random errors.
Table 1 shows variables used in model.
Tab. 1. Variables used in the modeling
Tab. 1. Zmienne uzyte w modelowaniu
Variable symbol Variable Description Range Units
F Water flow beyond the valve 0-5 m*h
cv Control value (controller output) 0-100 %
P1 Water pressure (valve inlet) 0-400 kPa
P2 Water pressure (valve outlet) 0-200 kPa
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Basing on model (10), the residuals can be obtained as

n=F—-{a+oCV,_)+¢,(CV,_,)+ e, (Pl )+ (11
(Pl )+ o5(P2,) + 9 (P2,,)},

which are the approximation of the errors &, .

4.2. The modelling results

The additive model (10) was fitted by the backfitting algorithm
and a natural cubic spline with degrees of freedom df=4, used as
a smoothing parameter [8, 11]. Based on the learning sample, we
obtained estimated flow values (predicted F), and real flow values
from the process (F), which graph was showed in Figure 3.

3.0

b -=F
— pm TN A T predicted F

20
[
'

1.0

0.0

0 200 400 600 800 1000
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Fig. 3.  The process of signals measured and modelled for the learning sample
Rys. 3. Przebieg sygnalow pomierzonego i modelowanego dla proby uczacej

4.3. The quality detection results

In order to examine detection algorithms basing on the received
model, a training sample consisting of data from the normal
process behaviour and data with simulated faults were applied.

Model (10) can be designed for detecting of the actuator faults.
Therefore, we can expect that residuals will be affected by the
faults showed in Table 2.

Tab. 2. Simulated faults
Tab. 2. Zasymulowane uszkodzenia

Nr Fault Description

1 fi Second control valve is opened in 10%

2 5 Opened bypass flow-meter

3 1 Valve clogging

4 fa Applying antipressure on the servo-motor chamber

Figure 4 shows graphs of signals measured and modelled, as
well as residuals for samples including the individual faults. On
their basis we can clearly see the deviation from the normal
process behaviour. Thus, the model (10) is sensitive to the
occurrence of individual faults.

Model checking is a procedure which leads to evaluation of the
model delivered in the modelling phase for quality and
effectiveness. In practice we have to determine measures of
variability which will describe how the measurements data in
relation to the prediction data are spread out.
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Fig. 4. The process of signals measured and modeled, as well as residuals for
samples including the individual faults

Rys. 4. Przebiegi sygnalow, pomierzonego i modelowanego oraz residuum dla
prob  zawierajacych poszczegodlne uszkodzenia

For this purpose, for the learning sample, samples with
individual faults £, f,, f; and f,, a sample from the normal

process behaviour (N), and also for the whole training sample
(T), the mean squared error (MSE), mean absolute deviation
error (MADE), mean absolute percentage error in relation
to range of measured output signal (MAPE) and variance of
errors (VAR) were obtained. The results were showed in
Table 3. On the grounds of this measures it is possible to
conclude, that the approach based on the additive model
performs very well.

Then the test 1 (5) with (K,K,) =(-0.0467,0.0437) and test 2

(6) with (K,K,)=(0.2352,0.0006), N =10,k =5, were applied

to the obtained residuals to evaluate model sensitivity to
individual faults [11]. The results in Table 3 are satisfactory
because on the basis of the mean percentage number of deviation
from the normal behaviour process, both tests detected all
symptoms of simulated faults, and at the same time any
incorrectness in the learning sample were noticed. These results
indicate the effectiveness of the fault detection in the analyzed
structures.

Tab. 3. Criteria of the additive model fitting and results of detection
Tab.3. Wskazniki jakosci dopasowania modelu addytywnego i wyniki detekcji

Training sample
Measures Learnin
sample
A Ja 5 Sa N T
MSE 3e-04 0.042 | 0.657 | 0.017 | 0.836 | 2e-04 0.17
MADE 0.099 0.076 | 0.567 | 0.108 | 0.565 | 0.011 | 0.168
MAPE][ %] 0.32 9.46 26.98 375 23.35 | 0.879 6.95
WAR 3e-04 0.007 | 0.349 | 0.008 | 0.568 | le-04 | 0.167
Test 1 [%] 0 33.73 | 5437 56.8 50 0 28.06
Test 2 [%] 0 50 73.68 73.3 87.5 0 39.8

5. Conclusions

In this paper, an effective method of modelling and predicting
the behaviour of fluid flow through the valve has been presented
for detecting purposes. This is a new way in the industrial
process diagnosis for which the difficulty associated with the
problem of dimensionality is substantially reduced. The main
advantage of the additive model is the possibility to examine the
roles of variables in predicting the response. Moreover, additive
nonparametric regression allows researchers to evaluate data
without the necessity to postulate for the relationship between
the response variable and inputs, and to combine flexible
nonparametric modelling of multidimensional inputs with
a statistical precision that is typical of one-dimensional
explanatory variable. Because the single variable might be
nonparametric in its effects, one can model the process with
nonlinearities that are difficult to be specified. Applied
backfitting algorithm converges to uniqueness and is
independent from the starting value solution, and is also easy to
be comprehended and does not require large computational
costs. Therefore, it’s a useful method for a multivariate
industrial process fitting and the fault detection in the analyzed
structures.
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