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Summary
The flutter analysis of modern aircraft search for the lowest (critical) flutter speed under given con-

ditions and the variation of the critical flutter speed with certain system parameters, however static
tests and ground vibration tests performed on prototypes show existence of structural nonlinearities
that result in LCO. The harmonic linearization and the continuation method, described in the paper,
have been successfully used previously to LCO prediction for a two degree of freedom profile with non-
linear pitch stiffness, and a sailplane with nonlinear controls of flaps, ailerons and elevator [10, 18,
22]. The „stiff wing” flutter model, supported by the mechanical system that allows for independent
mov e ment and simulation of nonlinear stiffness in „plunge” and „pitch”, has been used in wind tunnel
LCO tests. The nonlinearities in experiment generated electromechanically have given a possibility to
perform effective investigation of the influence of different nonlinear characteristics on LCO. The tests
have been performed at the Low Turbulence Wind Tunnel in the Institute of Aviation in Warsaw [15,
23]. Comparison of LCO calculation with continuation approach against wind tunnel results for 2D
flutter model with nonlinear stiffness in „plunge” and „pitch” are presented in the paper.

NOTATION
{q} – coordinates vector (column matrix),
[M] – mass matrix,
[K] = [C] + i[G] – complex stiffness matrix,
[C] – stiffness matrix,
[G] – structural damping matrix
[A(k)] – aerodynamics matrix (complex),
k = ω · b/V – reduced frequency,
ω – circular frequency,
b – reference length,
V – free-stream velocity,
ρ – free-stream density,
λ – eigenvalue,
VF – flutter speed,

Re(..) – real part of a complex value,
Im(..) – imaginary part of a complex value,
E – vibration amplitude level,
M(β) – hinge moment,
β – control surface deflection,
Ed – energy dissipated in one period of oscillation,

a – location of the rotation axis,
Kh0 – (linear) plunge stiffness,

Kα0 – (linear) pitch stiffness, 

βh, βα – nonlinearity factors, 

gh, gα – artificial damping,

M – mass,
S – mass static moment relative to the wing rotation axis,
I – mass moment of inertia relative to the wing rotation axis.
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1. INTRODUCTION

In the design of modern aircraft many computer hours are consumed on calculations of aeroelastic
problems. The most important of them are flutter analysis. The flutter analysis is therefore concerned
to a search for the lowest (critical) flutter speed under given conditions, and the variation of the critical
flutter speed with certain system parameters. Static tests and ground vibration tests carried out on pro-
totypes confirm existence of both distributed and concentrated structural nonlinearities. The effect of
distributed nonlinearities on the vibration mode shapes can mostly be regarded as negligible. Concen -
trated nonlinearities occur locally in control mechanisms or in connections between aircraft parts.
Nonlinearities of this type are indicated in static tests on the force-deflection diagrams or in ground
vibration tests on the frequency-ampli tude diagrams [1, 2]. That effects in additional complications in
analysis, because flutter of a non linear system may be of the limited amplitude but on the other hand
a non linear system that is stable with respect to small disturbances may be unstable with respect to large
ones. The nonlinearities in flutter calculations can be handled either by direct integration of equations 
of motion in the time-domain or by iterative search in frequency-domain [2, 4]. In both methods finite
amplitude limit-cycle solution are the targets. For systems with concentrated structural nonlinearities
the harmonic linearization [5] method is applied and equivalent stiffness and damping are obtained
for a given constant-amplitude harmonic motion. Earlier works [2, 4] confirm the efficiency of iterative
pro cess for systems having two nonlinearities. The iteration method is based on the assumption that the
aircraft motion is harmonic. Consequently, all nonlinearities of the structure must be harmonically
equivalent [10] because the classical, linear method is used in each itera tion step. One of recent deve -
lopments in numerical analysis is a class of continuation methods [11]. Continuation method can be
successfully applied to flutter calculation of systems without structural nonlinearities [12]. Application
of a continuation method to the flutter analysis for sys tems with interacting structural nonlinearities
is presented on examples of two degrees of freedom profile with non-linear plunge and pitch stiffness.
LCO calculations are compared with wind tunnel experiment for 2D flutter model.

2. FLUTTER EQUATIONS

The methods well known in practical flutter analysis are based on the solution of flutter equation in
the frequency domain. The fundamental assumption is that the motion of an aircraft is time-harmonic,
which is strictly satisfying only on a boundary between stable and unstable motion. The neutrally stable
aircraft motion is described by the flutter equation

, (1)

where: {q} – coordinates vector (column matrix),
[M] – mass matrix,
[K] – stiffness matrix (complex),
[A(k)] – aerodynamics matrix (complex),

which elements are functions of the reduced frequency:

ω – circular frequency,
b – reference length,
V – free-stream velocity,
ρ – free-stream density.

The complex stiffness matrix:
[K] = [C] + i[G] is a sum of a stiffness matrix [C] and a structural damping matrix [G].

− [ ]+ [ ]( ){ } = ( )⎡⎣ ⎤⎦{ }ω ρω2 2M K q A k q
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The flutter equation (1) (for an assumed value of reduced frequency k) is a system of homogeneous
linear equations with the parameter.

. (2)

Non trivial (complex) solution vector can be obtained with accuracy to constant multiplier and
should be normalized (for example to unit length and assumed phase)

, (3)

, (4)

where: Im (qn) – imaginary part of n-th element of {q} and {qH} – hermitian transpose of {q}.

The assumed value k and the (real) parameter ω, for which a solution of (2) exist, must satisfy the
equation

. (5)

When a proper combination of k – ω is found, then the flutter problem is solved and the flutter
speed V, flutter frequency ω and the flutter mode {q}are evaluated.

3. CLASSICAL SOLUTION

The classical way to find a solution of the flutter equation is the transformation of (2) to an eigenvalue
problem

, (6)

where

(7)
and

, (8)

where g is the artificial damping which must be (in calculation) added to, or subtracted from the
dynamic system (an aircraft) to preserve the harmonic motion (V – g method).

From (8) result

; ; and ; (9)

The eigenproblem (6) is solved for a set of reduced frequencies k and (9) are interpreted
(graphically) on V – g and V – ω diagrams. Critical conditions (neutrally stable motion) correspond to
g = 0. The lowest value V for g = 0 is the critical flutter speed VF.

4. CONTINUATION METHOD

Continuation methods are predictor corrector techniques for the solution of systems of non linear
equations which are functions of several parameters, defined over a specified range. Typically there
is one more unknown than equations. One of unknowns is chosen as the continuation parameter, and
is fixed during the corrector phase in order to give the same number of equations as unknowns. For
calculation economy it is important to pick the largest possible predictor step while maintaining con-
vergence in the corrector phase.
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The flutter equation (2) (V – g version) with the normalization equations (3, 4) completed by (5),
form the set of 2n + 3 real equations

, (10)

,

,

,

with 2n + 4 unknowns {q}, ω, g, k, V, where n is the number of coordinates (degrees of freedom) in
the equation (2).

If the structure of aircraft is non linear then the stiffness matrix [K] depends on [q] or more physically
[K] depends on amplitudes of aircraft vibration. Critical flutter conditions are in this case function of
the vibration amplitude, which is a new parameter (new unknown) in equations

, (11)

,

,

,

where: E – amplitude level proportional to a total mechanical energy in harmonic vibrations,
Re ([K(q)]) = [C(q)] – stiffness matrix.

The system of 2n + 3 equations (11) has now 2n + 5 unknowns {q}, ω, g, k, V and E. It means that
the one of parameters (the one of unknowns) must be fixed. For example if g = 0 during calculations,
then continuation solution gives the critical flutter conditions VF, ωF, {qF} dependent on vibration
amplitude level E (limit cycle solution).

5. HARMONIC BALANCE

Previously described methods are based on the assumption that the aircraft motion is time-harmonic.
Consequently, all nonlinearities of the structure must be harmonically equivalent. The effective tool 
in this case is the linearization method based on the principle of harmonic balance [5, 6] (harmonic 
linearization), which provides equality of amplitude of linearized system and the amplitude of the 
fundamental harmonic component of nonlinear system at = βcosωt. For the nonlinear force-deflection
function the real characteristic M(β) (for example: hinge moment – control surface deflection) is
replaced by the equivalent one

, (12)

defined for the time-harmonic motion . Real control surface deflections are:

. (13)

Equivalent stiffness and damping coefficients, C and G, respectively are obtained by balancing the
fundamental harmonic term of the Fourier series expansion of M(βr) during a single oscillation period.

β β β ωr t= =Re( ) cos

β β ω= ei t
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Harmonically equivalent stiffness:

(14)

and damping

(15)

are functions of the amplitude β in harmonic oscillation. Equivalent characteristic (describing function)

(16)

gives, after transformation, the following equation:

, (17)

where: – linear function of βr ,

– hysteresis function of βr .

The nonlinear force-deflection function is replaced after linearization by an equivalent one with
elliptical hysteresis. Energy dissipated in one period of oscillation is kept unchanged for the
equivalent characteristics

. (18)

The conditions necessary for the application of harmonic balance are discussed in detail by 
Popow & Platow [5] and Shen [6]. The integrals (14, 15) can by calculated analytically only for simple
M(βr) functions. Typical examples of analytical describing functions are presented in [6, 7]. For the
force-deflection characteristics obtained from tests, the only way to calculate inte grals (14, 15) is to use
numerical method. Practical tests conducted on aircraft, generally allow for estimation of nonli -
nearities such as: back-lash, solid friction, spring correctors and deflection stops. If nonlinearities are
also found to be dependent upon velocity of the control deflection then the tests are more complex and
therefore rarely performed on prototypes of aircraft.

6. THE SET-UP DESCRIPTION

6.1. The model suspension system

The Low Turbulence Wind Tunnel at Institute of Aviation has been chosen to prove the 
functionality of the new LCO model with computer control of a spring system [24]. This tunnel has 
a close rectangular test section with size 0.5 x 0.65 m. Maximum flow velocity is 85 m/s and can be
controlled in whole range with great accuracy (dynamic pressure accuracy up to 0.1 mm H2O). It has
high stability of flow velocity, which is necessary in the LCO measurements, when even minor changes
in velocity can cause changes in amplitudes of flutter modes and transient effects. It is particularly
important in the most interesting cases for velocities close to the critical flutter speed or in range of
LCO modes. The dimensions and kinematical scheme, of flutter model have been set to perform the
tests in the most suitable conditions for validation.

The NACA0012 profile has been chosen for the uniform wing cross section. It is probably the most
frequently used profile for basic investigation of non-stationary aerodynamics. The aerodynamic
surface span of the wing is 0.5 m and the chord 0.2 m. It is assumed that measurement range of
velocity is  from 15 m/s to 40 m/s and  flutter speed for linear portion of stiffness is about 20 m/s and
the frequency range from 5 to 10 Hz, what results in the non-dimensional frequency factor k from
0.15 to 0.3.

E M d Gd r r= ⋅ =∫ ( )β β π β 2�

M GG
r r( ) ( )β β β β= − −2 2
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r r( ) ( )β β β=
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The two degrees of freedom flutter model (Fig. 1, 2, 3, 4) was designed to obtain possible low mass
and was built of carbon composite excluding joints. The principal goals of the experiments were to
prove the effectiveness of the new system of tuning the nonlinear stiffness characte ristics of plunge
Kh and pitch degrees of freedom Kα .

Great flexibility of possible characteristics both with hardening and softening non-linear rule has
been obtained by application of the electro-dynamic exciters as the stiffness generators. The exciters
were activated by the computer controlled system which produces the programmed displacement-force
relation in real time.

Fig. 3. The overall view of the wind tunnel

Fig. 2. The view of the LCO model test sectionFig. 1. The design schema
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Fig. 4. The model suspension system
Using this concept any functional dependence between translation (or rotation) and the exciter

force can be easily generated. Also the negative damping forces can be hypothetically produced. The
only limitation is the stability of the control circuit where small damping is maintained by means of
adjusting the resistor in the exciter coil circuit. The results of the resonance testing (see Table 1) show
that the modes of interest i.e. plunge (translation) and pitch (rotation) are well separated from the
other vibration modes. No interaction with higher frequency modes should be expected.

Table 1. The results of Ground Vibration Test of the set up

Electrodynamics exciters are used as springs (see schema on Fig. 5). Dependence between displa -
cement and force is controlled by the digital computer. In the test set up 12 bits A-D and D-A con-
verters were used. The dependence between displacement and force can be easily digitalized – only
4098 element vector per channel are needed. The control program at the first step calculate matrix of
factors, and in the second step in steering loop it doesn’t calculate force factor – it simply takes it from
the vector.

6.2. Correction of the System Characteristics

The main problem was to obtain proper characteristic of “electronic spring” (Fig. 9). The available
electrodynamics exciters are nonlinear. The force factor (dependence of force upon the voltage on
entrance of power amplifier) is depending on coil position (Fig. 5, 6). For each of exciter used in tests
the measurements of dependence between voltage on power amplifier input and force on the coil were
done. The measurements were repeated for several positions of coil. For example results of the mea-
surements for the two positions of coil (5.05 mm and 14.35 mm) are presented on Fig. 7. To adjust the
characteristic, the vector of the correction factors has been established and used on each step. The
corrected exciter characteristics have been shown on Fig. 8.

No of event Mode name f [Hz]
Damping
coefficient

mod1031 Plunge (bending) 4.65 0.052

mod1032 Pitch (torsion) 5.71 0.042

mod1004 Vertical bending of arm 30.6 0.011

mod1001 Torsion of arm – low position of the node line 31.9 0.009
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Fig. 5. The force factor – coil deflection relation of the EX 303 exciter

Fig. 6. The force-displa ce ment characteristic  of the EX 303 exciter (control off)

Fig. 7. The dependence betwe en amplifier gain (1 = 100%) and ex citer force
for selected coil po si  tions: 5.05 mm (up) and 14.35 mm (down)
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Fig. 8. The dependence between  force and displacement of coil (with the digital correction)

Fig. 9. The block diagram of the „electronic spring” (one channel)

6.3. Tuning nonlinearities

The experimentally measured sets up parameters (reduced to unit span of the wing) are as follow:

Kh0 = 2170 [N/m], βh = 20000 [1/m2],

Kα0 = 24.10 [Nm/rd], βα = 800 [1/rd2].

Most of wind tunnel tests were performed for cubic nonlinearities:

Kh = Kh0 (1 + βh h2), (19)

Kα = Kα0 (1 + βα α2) (20)

and characteristics of “electronic springs” with this type of nonlinearity are shown on Fig. 10.
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Fig. 10. The compa rison be tween required (fine line) 
and mea sured (do ts) cha    ra cte ristic of non linear spring. 

Degrees of freedom – plunge (up) and pitch (down)

7. LCO CALCULATIONS COMPARED WITH WIND TUNNEL EXPERIMENT

Harmonic balance and a continuation method were applied to the flutter calculations of two de grees
of freedom wing [25], suspended in the wind tunnel by non-linear (cubic) springs (Fig. 1, 2, 3, 4) in
plunge and pitch. The PITCON package of FORTRAN subroutines [11] was used to solve the system
of equations (11). PITCON was designed at University of Pittsburgh to be a gene ral-purpose package
for the solution of undetermined system of non linear equations in which the number of equations is
one less than the number of unknowns. Calculation model of the wing is shown on Fig. 11.

The following parameters have been derived from the measurements during the tests:

• dependence of the amplitude of LCO on the velocity,
• phase shift between the modes of vibration plunge (h) and pitch (α).

For each flow velocity, vibrations of model were excited by the step of plunge or pitch. The time
histories were recorded. From this data the frequency and the amplitude of the vibration mode have
been extracted.
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Fig. 11. Two-dimensional wing (airfoil) suspended by plunge and pitch springs

Among others the influence of following parameters on LCO was tested during wind tunnel
experiment:

• rotation axis location for one nonlinearity in plunge (test case 1 and 2 and test case 5 and 5a),
• rotation axis location for nonlinearities in plunge and pitch (test case 7 and test case 16),
• one nonlinearity in pitch (test case 13),
• rotation axis location for linear model (test case 6 and test case 14).

The stiffness data of the wing tested in the wind tunnel are listed in the Table 2.

Table 2

where: a – location of the rotation axis,
Kh0 – (linear) plunge stiffness,

Kα0 – (linear) pitch stiffness,

βh, βα – nonlinearity factors,

gh, gα – artificial damping.

Experiment a
Kh0

[N/m]

βh
[1/m²]

Kα0
[Nm/rd]

βα
[1/rd²]

gh, gα

Test case 1 and 2 -0.5 2170 20000 24.10 0 (0.025, 0.050, 0.100)

Test case 5 and 5a -0.6 2170 20000 24.10 0 (0.025, 0.050, 0.100)

Test case 7 -0.6 2170 20000 24.10 800 (0.025, 0.050, 0.100)

Test case 16 -0.7 2170 20000 24.10 800 (0.025, 0.050, 0.100)

Test case 13 -0.6 2170 0 24.10 400 (0.025, 0.050, 0.100)

Test case 6 -0.6 2170 0 24.10 0 (0.025, 0.050, 0.100)

Test case 14 -0.7 2170 0 24.10 0 (0.025, 0.050, 0.100)
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The mass data reduced to the wing span are shown in Table 3.

Table 3

where: a – location of the rotation axis,
M – mass,
S – mass static moment relative to the wing rotation axis, 
I – mass moment of inertia relative to the wing rotation axis.

7.1. Test case 1 and 2 (nonlinearity in plunge; a = -0.5)

Calculation results compared with the wind tunnel tests are shown on Fig. 12, 13. Test results are
indicated by � and +. Calculation results are indicated by solid lines.

Fig. 13. LCO – pitch

Fig. 12.  LCO – plunge

a M[kg/m] S[kgm/m] I[kgm²/m]

-0.5 2.665979 0.0276580 0.0187950
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Examples of the time history and the phase shift are shown on Fig. 14 and Fig. 15.

Fig. 14.  Plunge and pitch amplitudes (exp.)

Fig. 15.  LCO (wind tunnel experiment)

The graphs were built based on the measured vibration amplitudes during the stable LCO for each
wind velocity. In “Test case 1 and 2” vibration were measured for more than 40 velocities. Comparison
of LCO obtain by calculations with experiment is very good for plunge and acce p table for pitch.
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7.2. Test case 5 and 5a (nonlinearity in plunge; a = -0.6)

Calculation results compared with the wind tunnel tests are shown on Fig. 16, 17. Test results are
indicated by � and �. Calculation results are indicated by solid lines.

Fig. 16. LCO – plunge

Fig. 17. LCO – pitch

Similar to “Test case 1 and 2” the graphs were build based on the measured vibration amplitudes
during the stable LCO for each wind velocity. Two flutter modes with different phase shift between
plunge and pitch were obtained in tests.
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Examples of the time history and the phase shift in first mode are shown on Fig. 18 and Fig. 19.

Fig. 18. Plunge and pitch amplitudes (wind tunnel experiment – first mode)

Fig. 19. LCO (wind tunnel experiment– first mode)
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Examples of the time history and the phase shift in second mode are shown on Fig. 20 and Fig. 21.

Fig. 20. Plunge and pitch amplitudes (wind tunnel experiment – second mode)

Fig. 21. LCO (wind tunnel experiment – second mode)

In the first mode the phase shift between plunge and pitch in LCO is approx. 90° as shown on Fig. 19
while in the second mode is more than 270° as shown on Fig. 21. Comparison of LCO obtain by 
calculations with experiment is very good for plunge and acceptable for pitch.
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7.3. Test case 7 (nonlinearities in plunge and pitch; a = -0.6)

Calculation results compared with the wind tunnel tests are shown on Fig. 22, 23. Test results are
indicated by � and �. Calculation results are indicated by solid lines.

Fig. 22. LCO – plunge

Fig. 23. LCO – pitch
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Examples of the time history recorded during wind tunnel tests are shown on Fig. 24, 25 and Fig. 26.

Fig. 24. Plunge and pitch amplitudes (exp.)

Fig. 25. LCO (wind tunnel experiment)
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Fig. 26. The measured plunge and pitch for nonlinear LCO [24]

Comparison of LCO obtain by calculations with experiment is qualitative agree for plunge and pitch
but amplitudes measured in experiment are approx. 40% lower than calculated ones. Oscillation
amplitudes on Fig. 24, 26 show asymmetry relative to the wing mean position during tests and the
vibration beat.
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7.4. Test case 16 (nonlinearities in plugne and pitch; a = -0.7)

Calculation results compared with the wind tunnel tests are shown on Fig. 27, 28.

Fig. 27. LCO – plunge

Fig. 28. LCO – pitch
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Examples of the time history and the phase shift are shown on Fig. 29 and Fig. 30.

Fig. 29. Plunge and pitch amplitudes (exp.)

Fig. 30. LCO (wind tunnel experiment)

Comparison of LCO obtain by calculations with experiment is qualitative agree for plunge and
pitch but amplitudes of oscillations measured in experiment are approx. 40% lower than calculated
ones. Oscillation amplitudes on Fig. 30 show asymmetry relative to the wing mean position during
tests and the vibration beat. Vibrations are disturbed by “noise” shown on Fig. 30.
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7.5. Test case 13 (nonlinearity in pitch; a = -0.6)

Calculation results compared with the wind tunnel tests are shown on Fig. 31, 32.

Fig. 31. LCO – plunge

Fig. 32. LCO – pitch
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Examples of the time history and the phase shift are shown on Fig. 33 and Fig. 34.

Fig. 33 Plunge and pitch amplitudes (exp.)

Fig. 34 LCO (wind tunnel experiment)

Comparison of LCO obtain by calculations with experiment is qualitative agree for plunge and pitch
but amplitudes of oscillations measured in experiment are approx. 40%÷50% lower than calculated
ones. Oscillation amplitudes on Fig. 33 show asymmetry relative to the wing mean position during
tests and the vibration beat. Vibrations are disturbed by “noise” shown on Fig. 34.
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7.6. Test case 6 (linear model; a = -0.6)

Calculation results compared with the wind tunnel tests are shown on Fig. 35.

Fig. 35 „Linear” flutter

Fig. 36 Plunge and pitch amplitudes (exp.)

Examples of the time history recorded during wind tunnel tests are shown on Fig. 36 and Fig. 37.
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Fig. 37. The measured plunge and pitch for linear case [24]
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7.7. Test case 14 (linear model; a = -0.7)

Calculation results compared with the wind tunnel tests are shown on Fig. 38, 39. Test results are
indicated by ▲ and ●. Calculation results are indicated by solid lines.

Fig. 38. „Linear” flutter

Fig. 39. Plunge and pitch amplitudes (exp.)

In both “linear” wind tunnel tests (case 6 and case 14) LCO was measured. The “linear flutter” was
not obtained in experiment. Pitch amplitudes on Fig. 39 show asymmetry relative to the wing mean
position during tests.
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8. CONCLUSIONS

1. Calculation performed for 2D model based on the harmonic balance and the continuation method
show qualitative agreement with wind tunnel experiment.

2. For 2D model with only plunge nonlinear spring, calculations are also quantitatively compatible
to wind tunnel experiment.

3. For only pitch nonlinear spring frequency beat and “noise” in main oscillations have been expe -
rimentally obtained. Calculation are qualitatively compatible to wind tunnel experiment. Oscillation
amplitudes measured in experiment are 20% to 40% lower than calculated.

4. Disagreements between experimental results and calculations as well as non detected “linear flutter”
during wind tunnel tests can result from:

• application of harmonic-balance, which is probably to far-going simplification,
• non identified nonlinearities existing in the test stand.

5. Wind tunnel tests (with controlled nonlinear stiffness) are expensive and difficult to perform.
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W. Potkański, Z. Lorenc, D. Szeląg

OBLICZENIA LCO PORÓWNANE Z BADANIAMI DWUWYMIAROWEGO
MODELU FLATTEROWEGO W TUNELU AERODYNAMICZNYM

Streszczenie

Klasyczna analiza flatteru współczesnych samolotów polega na poszukiwaniu najniższej (kryty -
cznej) prędkości flatteru w zadanych warunkach oraz zmiany tej prędkości przy zmianach niektórych
parametrów układu (samolotu). Badania statyczne i badania rezonansowe prototypów samolotów
wy kazują zwykle istnienie nieliniowości strukturalnych co skutkuje oscylacjami o ograniczonej ampli -
tudzie (cykle graniczne – LCO). Linearyzacja harmoniczna i metoda kontynuacyjna, opisana w arty kule,
była z powodzeniem stosowana wcześniej do wyznaczenia cykli granicznych (LCO) dla profilu o dwóch
stopniach swobody z nieliniową sztywno ścią skrętną oraz dla szybowca z nieliniowymi układami
sterowania klap, lotek i steru wy sokości. Do badań doświadczalnych LCO wykorzystano „sztywny
model flatterowy skrzydła” zawie szony w tunelu aerodynamicznym w sposób umożliwiający niezależne
przemieszczenia translacyjne i obrotowe oraz symulację nieliniowych sztywności przy tych przemie -
szcze niach. Nieliniowości gene  rowane były w eksperymencie przy pomocy układu elektro-mechani -
cznego co pozwoliło na efektywne badanie wpływu różnych charakterystyk sprawnościowych na
LCO. Badania były przeprowadzone w Tunelu Niskiej Turbulencji w Instytucie Lotnictwa w Warsza -
wie. W artykule porównano wyniki obli czeń cyklu granicznego z wynikami  badań doświadczalnych.

B. Поткански, З. Лоренц, Д. Шелонг

РАСЧЁТЫ LCO И ИХ СРАВНЕНИЕ С РЕЗУЛЬТАТАМИ ИССЛЕДОВАНИЙ 
ДВУХРАЗМЕРНОЙ ФЛАТТЕРНОЙ МОДЕЛИ В АЭРОДИНАМИЧЕСКОЙ ТРУБЕ

Резюме

Классический анализ флаттера современних самолётов заключается в поисках наименьшей
(критической) скорости флаттера в данных условиях и изменения этой скорости при изме -
нениях некоторых параметров системы (самолёта). Статические и резонансовые исследо -
вания прототипов самолётов показывают обычно существование структурных
нели ней ностей, что сказывается осциляциями с ограниченной амплитудой (граничные циклы
– LCO). Гармоническая линеаризация и метод континуации описанные в статье были успешно
применены раньше для определения граничных циклов (LCO) профиля с двумя степенями
свободы и с нелинейной крутильной жёсткостью и дла планера с нелинейными системами
управления закрылками, элеронами и рулём высоты. Для экспериментальных исследований
LCO была применена „жёсткая, флаттерная модель крыла” подвешенная в
аэродинамической трубе таким обра зом, чтобы перемещения трансляции и оборота были
независимыми и чтобы можно было симулировать нелинейную жёсткость при этих пе ре -
мещениях. Нелинейности задавались во время эксперимента с помощью электромеханической
системы, что позволило успешно иссле довать влияние разных жёсткостных характеристик
на LCO. Исследования проводились в Аэродинамической Трубе Малой Турбуленции в
Институте Авиации в Варшаве. В статье сравниваются результаты рассчётов граничного
цикла с результатами экспериментальных исследований.
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