PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pomiar ciśnienia fali uderzeniowej za pomocą polimerowego czujnika piezoelektrycznego

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Shockwave pressure measurement with the use of polymer piezoelectric pressure gauge
Języki publikacji
PL
Abstrakty
PL
W pracy zamieszczono literaturowe informacje dotyczące piezoelektrycznych czujników ciśnienia typu PVDF, pozwalających mierzyć ciśnienie fali uderzeniowej o amplitudzie do 45 GPa z rozdzielczością czasową 5 ns. Zamieszczono formuły wzorcowania czujników. Opisano przykłady wykorzystania czujników w takich dziedzinach jak: kontrola ruchu drogowego, badanie właściwości materiałowych, pomiar ciśnienia fali uderzeniowej. Przedstawiono wyniki własnych pomiarów fal uderzeniowych wzbudzanych przez impuls promieniowania laserowego.
EN
The review of publications on the subject of PVDF piezoelectric pressure gauges is presented in the paper. PVDF gauges allow to measure pressures up to 45 GPa with temporal resolution of about 5 ns. The calibration formulas of pressure gauges are included (fig. 1). Some examples of application of PVDF gauges in such areas like medicine, traffic control, material properties investigation and shockwave are presented. Results of author's measurements of laser induced shockwave are described (fig. 4 - 6). Influence of such parameters as sample thickness and acoustic impedance of layers on pressure profile is shown. The experimental setup will be used for optimization of laser shock processing technology.
Wydawca
Rocznik
Strony
627--630
Opis fizyczny
Bibliogr. 22 poz.,rys., wykr., wzory
Twórcy
Bibliografia
  • [1] K. Ding, L. Ye, Laser shock processing – Performance and process simulation, Woodhead Publishing Limited, Cambridge, 2006.
  • [2] W. Napadłek, A. Sarzyński, Influence Of Laser Shot Peening on Topography of Ti-6Al-2Cr-2Mo Titanium Alloy Surface Layer, AMT 2007, Inżynieria Materiałowa, rok XXVIII, w druku.
  • [3] W. H. Zhu, T. X. Yu, Z. Y. Li, Laser-induced shock waves in PMMA confined foils, International Journal of Impact Engineering 24 (2000) 641–657.
  • [4] G. Banas, An application of PVDF gauges for pressure measurements during laser shock processing, Transactions on Engineering Sciences vol 8, Computer Methods and Experimental Measurements for Surface Treatment Effects II, pp. 239-246, 1995, Ed. M. H. ALIABADI, Wessex Institute of Technology, Southampton.
  • [5] Xin Hong, Shengbo Wang, Dahao Guo, Hongxing Wu, Jie Wang, Yusheng Dai, Xiaoping Xia, Yanning Xie, Confining Medium and Absorptive Overlay: Their Effects on a Laser-induced Shock Wave, Optics and Lasers in Engineering 29 (1998) 447–455.
  • [6] Bauer F., PVDF shock compression sensors in shock wave physics, CP706, Shock Compression of Condensed Matter – 2003 ed. M. D. Furnish, Y. M. Gupta, J. W. Forbes, pp. 1121–1126.
  • [7] S. Couturier, T. de Rességuier, M. Hallouin, J. P. Romain, F. Bauer, Shock profile induced by short laser pulses, J. Appl. Phys. 79 (12), 15 June 1996, pp. 9338-9342.
  • [8] www.ktech.com/research_development/applied_physics/The piezoelectric properties of PVDF.pdf
  • [9] J. S. Harrison, Z. Ounaies, Piezoelectric Polymers, NASA Report No. 2001-43, http://www.teccenter.org/electroactive_polymers/assets/pdfs/ piezo_polymers/icase_piezo.pdf
  • [10] A. V. Bushman, G. I. Kanel’, A. L. Ni, V. E. Fortov, Intense Dynamic Loading of Condensed Matter, Taylor & Francis, 1993.
  • [11] Piezo Film Technical Manual, Measurement Specialties Inc., www.msiusa.com, http://www.media.mit.edu/resenv/classes/MAS836/ Readings/MSI-techman.pdf
  • [12] N. Noury, E. Chamberod, Ph. Benech, A. V. Kalinin, A. Bleuze, An instrumentation based on the piezopolymer P(VDF – TrFE) for the analysis of the elastical parameters of rocks under stress, Ultrasonics 36, pp. 257–262, 1998.
  • [13] V. Stankevič, Č. Šimkevičius, Semiconductor pressure-pulse sensor, Sensors and Actuators, A 51, pp. 159 – 163, 1996.
  • [14] Krueger R. R., Seiler T., Gruchman T., Mrochen M., Berlin M. S., Stress Wave Amplitudes during Laser Surgery of the Cornea, Ophthalmology Vol. 108, No. 6, pp. 1070–1074, June 2001.
  • [15] F. Bauer, Properties of ferroelectric polymers under high pressure and shock loading, Nuclear Instruments and Methods in Physics Research B 105 (1995) 212–216.
  • [16] F. Bauer, Ferroelectric PVDF polymer for high pressure and shock compression sensors, 11th International Symposium on Electrets, 2002, pp. 219-222.
  • [17] F. Bauer, PVDF Shock Sensors: Applications to Polar Materials and High Explosives, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, no. 6, November 2000, pp. 1448-1454.
  • [18] F. Bauer, Advances in Piezoelectric PVDF Shock Compression Sensors, 10th International Symposium on Electrets, IEEE 1999 pp. 647-650.
  • [19] F. Bauer, PVDF gauge piezoelectric response under two-stage light gas gun impact loading, CP620, Shock Compression of Condensed Matter – 2001 edited by M. D. Furnish, N. N. Thadhani, and Y. Horie © 2002 American Institute of Physics, pp. 1149-1152.
  • [20] F. Bauer, Ferroelectric Polymers for High Pressure and Shock Compression Sensors, Mat. Res. Soc. Symp. Proc. Vol. 698, 2002 Materials Research Society, pp. EE2.3.1-12.
  • [21] R. V. Hodges, L. E. McCoy, J. R. Toolson, Polyvinylidene Fluoride (PVDF) Gauges for Measurement of Output Pressure of Small Ordnance Devices, Propellants, Explosives, Pyrotechnics 25, pp. 13-18 (2000).
  • [22] http://www.dynasen.com/pdf/PVF2%2011%20%26%204.pdf
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW4-0055-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.