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Abstract

Measurements of roundness deviations constitute an important area of
geometrical metrology. As high accuracy is frequently a major
requirement, it is essential that an analysis involve determining the
position of the centre of the associated circle. Extensive studies have been
conducted on the accuracy of measurements of closed roundness profiles.
Many machine parts, however, have interrupted profiles. The relationships
presented in this paper can be used for calculating the centre of the
associated circle for interrupted profiles by applying the least squares
method.
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Obliczanie parametréw okregu skojarzonego
dla przerywanych zarysow okragtosci

Streszczenie

Pomiary odchyltek okraglosci stanowia bardzo wazny obszar metrologii
wielkosci geometrycznych. Bardzo czgsto, w pomiarach tego typu
wymagana jest duza dokladnos$é. Z tego wzgledu dokladnie obliczenie
potozenia $rodka okrggu skojarzonego jest zagadnieniem szczegdlnej
wagi. Problem ten jest dobrze rozpoznany w odniesieniu do zamknigtych
zarysOw okraglosci. Jednak wiele elementéw czgéci maszyn ma zarysy
okraglosci przerywane (niedomknigte). W artykule przedstawiono
zaleznosci umozliwiajace obliczenie $rodka okrggu skojarzonego metoda
najmniejszych kwadratéw dla tego typu zarysow.

Stowa kluczowe: okrag skojarzony, zarys okraglosci, zarys przerywany.

1. Introduction

Rotary elements constitute a large and very important group of
machine parts. They are commonly found in such industries as
automotive, power engineering or paper making. High accuracy of
measurement of roundness deviations is one of the priorities of
industrial metrology. If a roundness profile is to be measured
using an instrument with a rotary spindle or table, the object needs
to be centred in such a way that its axis coincides with the axis of
rotation [1]. It should be mentioned that such measurements can

be performed at a high amplification rate, which reduces the level
of measurement-related noise as well as errors resulting from the
signal quantization. The centring, however, is a laborious
procedure which requires good manual skills, especially if an
interrupted profile, i.e. a fragment or several fragments of a closed
profile, is to be measured. High non-centricity of a profile may
occur in a measurement of concentricity of one profile in relation
to another if both profiles are clearly nonconcentric.

Rapid developments in electronics have led to the improvement
in the design of measuring amplifiers. They are now characterized
by high measurement resolution and a low level of noise. Accurate
centring of an object is not required [2]. If the object centre does
not coincide with the centre of rotation, it is important that the
analysis of the measurement results take account of the
nonlinearity of the function linking the real and the measured
profiles.

2. Determining the centre of the associated
circle for closed profiles [3]

Let us consider an XY coordinate system whose origin O is the
point of rotation of the table or spindle (see Fig. 1)

A

g

Fig. 1. Reciprocal position of the centre of rotation, O, and the centre
of the nominal profile, O’

Rys. 1. Wzajemnie potozenie srodka obrotu O oraz srodka zarysu
nominalnego O’

Let the equation of the real profile in the polar system with
origin O be equal to R (¢). Let O’ be an arbitrary point in the
XY-plane. Let the equation of the profile in the polar system with
origin O’ have the form of R'(«). The equation depends on the
coordinates of position of point O’ in relation to point O. The
coordinates of point O’ in the XY system and in the polar system
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will be denoted by (e, e,) or (e &), respectively, where

e=,le; +e; , 5 =arctan(e,,e,) . Coordinates (e,, ¢,) and (e, &)
will be used interchangeably depending on the circumstances.

When the object centre is determined on the basis of relative
readings of the instrument, the absolute value of the distance of
the object profile from the centre of rotation, O, is not known. We
know, however, that:

R, =R, +AR, )

for certain R, but the value is not exactly known [4]. In the

majority of cases, we know the nominal value of the object radius,
R, . The value can be identified basing on the value of the mean
radius. The task of determining the centre of the associated circle
(hereafter referred to as the mean circle) using the least-squares
method can be formulated as follows: determine coordinates
(e, 6) of point O’ and the mean value of the measured profile R,

in such a way that for a given value of R, the integral:
1 27
J(e,5,R) = S J'(R' (@)-R, ) da 2)
0

reaches a minimum in relation to variables ¢, § and R, .

The solution of the task simplifies considerably when the
assumption that the roundness deviation is much smaller than the
nominal radius R, is fulfilled. Figure 1 will be used to illustrate
the problem in the considerations. As was assumed, the
coordinates of point O’ in the XY-system are equal to e, e,,
while the distance of point O’ from the system origin and the
angle of inclination between segment OO' and the X-axis is e

and §, respectively (thus: e =ecoss, e, =esind ). The angles

between segments OD and O'D and the X-axis will be denoted
by and ¢ , respectively. The relationship between segments OD
and O'D and angle ¢ will be denoted by R,(¢) and R(¢p),
respectively, while the distance of segment O'D in the function of
angle o will be denoted by R'(«). The following relationships
can be derived from Fig. 1:

R, () = ecos(p—5)+[R*(p)—€’sin’ (p—0) 3)
sina = W @
cosa = R, (p)cosp—ecosd ' (5)

R(p)

If the roundness deviation is much small than the nominal
radius, it can be assumed that:

R, (9) = ecos(p— ) + | R*(¢) — &’sin* (9 — ) =

6
= R,(£ cos(@ — ) ++/1-&’sin’*(p - &) = ©
df
= Of(£>57¢)

where:

o e
f(£,5,0)=6cos(8 — @) ++/1 - &*sin’(p—0) > €= e (7

o

Then, the mean value of profile R, (¢) in the range (0.27) can
be determined using the following relationship:

1 2z 1 2z
R,(e)=— |R,(p)dp=R, — ,0,0)dp =
(@) ZHOJ W(P)dp=R, — Ojf(s p)dp

27 2R
R, [\1=&%sin’ (p-8)dp = 2t k()
2n b

, ®)

where «(¢) is a complete elliptic integral of the first kind [5].

Since component 4/1-£%in’(p—¢) of function f(£,5,9) is

periodic with period 1 in relation to variable ¢, we can write that:

2n
J.\ll —&’sin(p— 8)singpdp =0,
0
2n
J‘\H—gzsin((p—c?)coswd(pzo. 9)
0

Thus, using the assumption that the roundness deviation is
much smaller than the nominal radius again, we get

2n 2n
L[k, (pxospdp =2 ecos@-p)dp=c,,  (10)
T 0 T 0

2 27
L j R, (@)singdg = ! [esinG-p)pdp=c,.  (11)
ﬂ- 0 T 0 ‘

From relationships (10) and (11) it is clear that the coefficients
of the first harmonic component of the measured profile are
approximately equal to the coordinates of the centre of the profile
mean circle, despite the complex nonlinear relationship describing
the measured profile.

From the above it is clear that the centre of the mean circle and
the real profile can be determined basing on the measured profile,
AR,, , in the following way:

1. Calculate the coordinates of the mean circle from formulas (10)
and (11):

1 o 1 2n .
e =— J'ARm (p)cospdp, e, = — jARm((p)sm(pd(p.
o Ty

2. Calculate the profile measured in absolute values

R

a

2R
R, =R,(e)+ AR, ==C x[ej +AR,
T

3. Calculate the real profile from relationship (3), then

R(@) =[R2 (9) ~ 2R, (p)ecos(S — p) + & »

a(p) = arctan(R,, (@)cosp —ecosd, R, (p)sing —esind) -

3. Determining the centre of the associated
circle for interrupted profiles

Interrupted profiles are recorded, for instance, in the
measurement of tooth wheels, transverse cross-sections of bearing
rings, etc.. The solution of the problem of determining the centre
of the associated circle for interrupted profiles was divided into
two parts. In the first stage, the problem was solved for the case

when quotient ¢ = Ri is negligible. It was necessary to develop
0
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a special algorithm to determine the centre of the associated circle

for an arbitrary value of ¢ = L.
0

a) the case of a low value of coefficient &

Denote the set of angles for which the profile AR, is known by
@ . Linearizing Eq. (3) around ¢ = 0, we obtain:

R, (9) = R(p)+ecos(p— ) = R(p) +ecosp+esin(p). (12)

Thus, the unknown coordinates of the centre of the mean circle,
R,, e , e,, will be determined by minimizing the index number:

J(e, e, R,) = [(AR, (@)~ R, —ecosp—esing)'dp. (13)
@

. . . oJ oJ
Comparing the partial derivatives —, —, —— to zero, we get:
OR,  Oe_ Oe,
2 .
Icos pde J.cosgosmqu(p J.cosgodw IAR,,(@COS(pd(p
D @ @ x [
Icosgpsingodw Isin%dqp Isinwdqo ‘le, |= J‘ARm(qa)sinqod(p
D D D R D
jcosgad(p jsin(od(p J.l de ? J.ARW((p)d(o
[ [ @ @
(14)

b) the case of an arbitrary value of coefficient &

For a given point O’ with coordinates (e, 5), let R'(a):a € 4
be the profile equation in the polar system with origin O’. We
need to determine the values of e, § and R, in such a way that

the integral:
J(e,6,R,) = [(R(a)~R,) dar (15)
A

can reach a minimum in relation to variables ¢, § and R, . Angle
o 1s a function of angle ¢ and it depends on the values of ¢, §,
thus (Egs.(3-5)):

a = g(&,6,p) = arctan(f(¢,6,¢)sing — (16)
—esind, f(&,0,p)cos@ — ecosd)

Set A, on the basis of which the profile R'(«)is determined, is
equal to g(&,0,®@) for a certain set of @.

This method is iterative in nature. Let ¢, § and ﬁa be certain
estimates of unknown values of ¢, § and R, . In the first step,
assume that =0, 6=0 and 1?3 =R, . Determine integral (15).
As the measured profile is given by the function of angle ¢,
variable ¢ will be substituted with ¢ in relationship (15). First,
we will determine the relationship between differentials dez and
de . If we assume that the roundness deviation is smaller than the
radius, then from relationships (4) and (5), we get:

sina = f(&,5, p)sing —&sind » (17)
cosa = f(&g,0,p)cosp — & coso - (18)
By differentiating Eqgs. (17) and (18), we obtain:

cosada = (f«,(g,é',(o)sinqojL f(e,0, (o)cos¢)d¢1 (19)
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—sinada = (fw(g, 9, p)cosp— f(&,0, (p)sin(p)d(p (20)

After squaring the two equations, adding to both sides and
extracting roots, we finally obtain:

&
da = [f2(e.6.0)+ f2(e.6.0)dp=h(p)lp- (1)
If definition (7) is applied, then:

£COSQ

@) =1+ ————
=1+ J1-&%sin’p 22

Substituting variable ¢ in (15) with @, we get:

J(e,5,R,) = [(R'(@)=R,y'da = [(R(p)-R,)’ h(p)dp

= [(J(R (@)cosp-e,) + (R, (p)sinp—e, ] — R, h(p)dp

(23)
where: R (@) =R, + AR(p). Let:
e. =€ +Ae, (24)
e, =é}, +Aey, (25)
R, =R, +AR,. (26)

where ¢, é, and R, are the current estimates of e , e

)
and R,, while Ade , Je
of  the denote by
plee,.R)= (R, (@)cosp—e +(R,(p)sinp—e,J .

After linearizing the p(e,e,,®) function around point

y
and AR, are the -corrections

y

current estimates. Let us

(é,.¢,.R,), we get:

ple.se,.p)=ple,.e,.p)

ople,,e,, aple,,e,, dple,,e,,
+p(x Lrﬂ)Aeﬁp(, ,w)Aeerp( rﬂ)ARu
de de, ’ OR

x y a

(egse,R,)=(80,8,,R,)
27
Thus:

Ji(Ae,,Ae,,AR,) = J(é, +Ae,,é, +Ae,, R, + AR,)

= [e) -V (@)te, e, AR} h(p)dp (28)

where

w(@) = R(p)- R, (29)

) Iém (p)cosp —eé,
vip) == R, (p)sinp—¢, |, (30

@) &) ecos(p—3)

h(p) = 1+—“A°S@_5) — 31)

V1= £&%in*(p—-9)
R,(@) =R, +AR,(9) (32)

R =R (p)cosp—2. ] +(&,(@sinp—2.f . (3)
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By minimizing the functional J, after Ae, AS and AR, we

finally have:
Ae, -1
Ae, =[jv(¢)vr(¢)h(¢>dw] [wevp)dp- (34
AR D D

a

Basing on the derived relationships, we can define the algorithm
for determining the unknown parameters of the associated circle
e, 6 and R, . The algorithm is iterative in nature and we can

describe it in the following way:

1. Assume that 6=0, §=0 and R, =R, .

a

2. From relationships (32), (33), (30), (29), (31), determine
R,(9). R(p) and v(p). w(p). h(p).

3. From relationship (34), determine the corrections Ae,, Ae, and

AR, of the current estimates, é_, €, and fea.
4. Assumethat é =¢é +Ae,, é,=¢ +Ae,, R, =R, +AR,.
5.Stop the algorithm if the stop condition is satisfied

|Ae,|+|Ac, | +[AR,

£. Otherwise, move on to point 2 of the algorithm.

< ¢ for a properly selected small number of

It should be noticed that the first step of the defined algorithm
coincides with that of the traditional method described in the
previous section.

4. Simulation results of the algorithm for
interrupted profiles

Consider the following form of the real profile:
R' (@) =1+ k(sin(3a) + 0.5cos(10x) + 0.2sin(50c + 7t/ 2), k =0.001

defined in the range of angle « e[e,a,]=A4. Assume that
e=0.1,6=n/4,a, =-n/2, a,=n/2.
Figure 2 shows some other samples of the measured profile.

Ry [pm]

¢ [rad]

Fig. 2. Other samples of the measured profile R,,(p) obtained by simulation

Rys. 2. Kolejne probki zarysu zmierzonego R, (p) uzyskanego w wyniku symulacji

By applying the above mentioned algorithm, we obtained the
following values of the corrections (Ae,,Ae,,AR,):
1. First iteration:
(Ae, =0.0706799,Ae, = 0.0727162,AR,, = 0.0449252),
2. Second iteration:
(Ae, =0.0001163442 Ae, =—0.00208172 AR, =-0.00239817).
3. Third iteration:
(Ae, =-3.006325- 10’6,Aey =2.49451-107,AR, =-2.80133-10°).

4. Fourth iteration:
(Ae, =1.4454-107,Ae, =—1.45832-107 AR, =8.57539-107") ,
As can be seen, we obtain the exact values of the parameters
(Ae,,Ae,,AR,) after the first two iterations. Figure 3 shows
a graph of the AR (o) profile deviation after the first and second
iterations.

AR [pm]
3
2
\/\/\/\,\ !
a [rad]
-15 | 0 Vs
1
=2 \‘ 2nd iteration
-3
1stiteration

Fig. 3. Deviation of the AR'(«) profile after the first and second iteration
Rys. 3. Odchylka zarysu AR'(«) po wykonaniu pierwszej i drugiej iteracji

5. Conclusion

Measurements of roundness deviations constitute an important
area of geometrical metrology. As high accuracy is frequently
a major requirement, it is essential that an analysis involve
determining the position of the centre of the associated circle.
Extensive studies have been conducted on the accuracy of
measurements of closed roundness profiles. Many machine parts,
however, have interrupted profiles. An example is the transverse
cross-section of a bearing ring. Basing on the relationships derived
above, one is able to calculate the position of the centre of the
associated circle for interrupted profiles by applying the least
squares method. It is important to note that the assumption that the
ratio of non-centricity to the nominal radius is negligible does not
have to be fulfilled. The concept of calculating the centre of the
associated circle for interrupted profiles was verified by computer
simulations. The results confirmed the correctness of the
relationships derived. It was also shown that accurate results can
be obtained after the second iteration is completed.

The paper was presented at the 3™ International Conference on
“Metrology in Manufacturing Technologies” at Biatystok
University of Technology in September 2007.
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