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Abstract

Railway’s surface defects belong to some kind of railway’s flaws not been
detected by traditional ultrasonic method and therefore they pose a major
thread to the safety of railway traffic. Paper’s aim is to present the Method
of Metal Magnetic Memory along with SVM network allowing for
detection of surface defects. Signals coming from the device whose
operation is based on this method are given to wavelet’s packet block
extracting the most important features characterizing surface defects,
followed by SVM network operating as a classifier.

Keywords: Method of Metal Magnetic Memory, wavelet’s transform,
SVM networks.

Sie¢ SVM w klasyfikacji uszkodzen szyn
kolejowych

Streszczenie

W artykule przedstawiono probg wykorzystania metody magnetycznej
pamigci metalu wraz z klasyfikatorem opartym o sie¢ SVM (Support
Vector Machines) do wykrywania wad powierzchniowych wystepujacych
w szynach kolejowych. Wady te sa niewykrywalne przez tradycyjne
metody oparte na ultradzwigkach a przez to stanowia powazne zagrozenie
dla bezpieczenstwa ruchu pociagow.

Stowa kluczowe: Metoda Magnetycznej Pamigei Metalu, transformata
falkowa, sieci SVM.

1. Introduction

Most methods using to detect railway’s defects are based on
ultrasonic. Ultrasonic method determines the position of defects in
railway on the basis of the measurement of return duration of
ultrasonic rays emitted by ultrasonic head. Surface defects occur
in the upper layer of railway’s head what makes the measurement
of return time practically impossible. On the other hand, these
defects left uncontrolled pose a large thread to the safety of
railway traffic. There were several dangerous railway crashes
including trains derailing caused by such defects. Cost of each
crash reaches many billions of zloty, what makes the problem very
crucial. Surface defects can be divided into several categories:
head-checking, squat, and shelling. Unfortunately, presented
solution allows for the detection only head-checking defects. It
exploits Method of Metal Magnetic Memory along with wavelet’s
packets and SVM network. Because of it, it could be used as
a complementary method to ultrasonic method.

2. Method of Metal Magnetic Memory

In order to recognize railway’s surface defects, Method of
Metal Magnetic Memory has been utilized. This method exploits
the magneto-elastic effect [1, 2]. If the cyclic force is pressed on
some point and there exists external magnetic field for example

earth magnetic field, then residual magnetism of this point
increases permanently. Material deformation arising during such
load is estimated by the measurement of components of stray
magnetic field H, near the surface of examined object. Basing on
[1], it can be argued, that there exists the following relationship
between stray magnetic field H,, and the stress Ao occurring in the
material:
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is the sensitivity of magneto-elastic phenomena at the constant
magnetic field H and temperature T. Additionally z, and Az mean
magnetic permeability of air and induction change on Ay interval
respectively.

Stray magnetic field H, depending of material deformation can
be measured with the use of magnetometer of type TSC-1M-4.
This device is fitted with four heads, each of them is able to
independently measure two components of stray magnetic field —
tangential and normal. The portable device records signals coming
from measuring heads. These records can be further downloaded
to personal computer through RS232 interface. Recorded signals
are supposed to be classified by the intelligent signal-processing
unit.

3. Overall Structure of Surface Defect’s
Detector

The task of surface defect’s detector is to recognize the type of
defect on the basis of the signals being recorded by magnetometer.
Magnetometer has four measuring heads, each of them is
responsible for scanning of corresponding slice of railway’s head.
Because magnetometer records eight signals (four measuring
heads, each recording tangential and normal stray magnetic field’s
components), therefore defect’s detector will consist of eight
independent channels, each connected to the corresponding signal.
Each channel is to recognize two groups of signals: the first
corresponding to normal state of scanning slice and the second
corresponding to head-checking defect. Fig. 1 shows the structure
of surface defect detector along with channels, which consist of
feature extracting block followed by classifier’s block. Because
classifying signals are transient and non-stationary, it is necessary
to extract some unique feature set allowing for discrimination
between two groups of signals. After extracting, features are given
to classifier block, whose task is to recognize to which group the
signal belongs. Wavelet’s packet has been used as a feature
extractor and SVM network as a classifier.
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Fig. 1.  Structure of surface defect’s detector

Rys. 1. Struktura uktadu detektora wad powierzchniowych

4. Feature extractor

Distinction of signals belonging to two aforementioned groups
(classes) is not easy task. Fig. 2 presents exemplary signals
corresponding to normal state of railway and Fig. 3 presents
exemplary signals corresponding to head-checking defect [3].
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Fig. 2. Exemplary signals corresponding to normal state of railway
Rys. 2. Przyktadowe sygnaly odpowiadajace normalnemu stanowi szyny
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Fig.3. Exemplary signals corresponding to head-checking defect
Rys. 3. Przykladowe sygnaly odpowiadajace wadzie typu ,.head-checking”

Feature set allowing for the discrimination between two group
of signals should be as small as possible [4, 5]. This requirement
suppresses the information redundancy, what in turn speeds up the
learning process of classifier. As it can be seen form Fig. 2, 3,
these signals are transient and non-stationary. For these signals the
time-frequency analysis is usually carried out. Two factors are
crucial in this analysis — temporal and frequency resolutions. In
the Fourier transform, frequency resolution increases with the
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length of Fourier window. However, an increase in frequency
resolution causes a decrease in temporal resolution. The trade-off
between temporal and frequency resolutions is often necessary in
the analysis. Wavelet transform is a technique, which allows the
designer to choose the trade-off [6]. The wavelet packet’s
decomposition is an extension of wavelet transform, which
calculates level by level transformation of signal from time
domain to frequency domain [7]. At each level of decomposition
a decrease in temporal resolution and an increase in frequency
resolution take place. Let h(n) and g(n) be finite impulse response
low-pass and high-pass filters respectively, where the Daubechies
14-points filter are used for wavelet packet decomposition. Let
x(n) be original signal, whose length is equal to N, where N is
power of 2. Decomposition consists in performing convolution of
x(n) with h(n) and g(n) followed by a decimation by two. Let x4(n)
and x4(n) be sequences resulting from low-pass filter decimation
and high-pass filter decimation respectively, then it can be written:

Fy(x(n)) =" x(k)h(2n — k)
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Decimation causes that each of sequences has half as many
samples as x(n). Decomposition consists in performing formula
(3) in the recursive manner. Fig. 4 presents exemplary
decomposition showing in the tree form for x(n) of length 4. Each

branch of tree called the bin vector contains discrete sequence.
The bottom bin vectors have only one element.
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Fig. 4. Wavelet packet decomposition for signal x(n) of length 4
Rys. 4. Sposob dekompozycji na paczki falkowe sygnatu x(n) o dtugosci 4

The question should be posed, how outcomes of wavelet packet
decomposition can be turned into the plausible feature set. In order
to get rid of information redundancy, the feature set should
contain as few elements as possible. In our approach to feature
extraction, an average energy is calculated for each bin vector [8].
If e, denotes average energy of bin vector y of length N, then:

1 ; 4
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Further, the energy vector e containing average energy of each

bin vector is created in the following manner:
e=[e, e (5)
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where M is the number of bin vectors in wavelet packet
decomposition. In order to perform wavelet packet decomposition,
150 samples of signals corresponding to normal state and 30
samples of signals corresponding to head-checking defect has
been chosen at random. Further, every sample was divided into
frames of constant length 512 points. Every frame is processed by
wavelet packet decomposition, followed by calculation of an
average energy of each bin vector and creation of energy vector e.
The signal corresponding to head-checking defect has two
components, first carrying relevant to head checking defect
information and second having irrelevant information — called the
background noise. If both components are uncorrelated, then head
—checking’s signal is the sum of these components. In order to
enhance differences between signals belonging to two groups the
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following normalization for every element i of energy vector e of
every frame for every group is performed [8]:

e
é, =—"— (©)
yi,ave
where:
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J=1

is an average energy of the noise for i-th element of energy

vector e, eyi,.(") is the i-th element of j-th frame energy vector of

signal belonging to the group corresponding to normal state of
railway and R is the number of all frames of signals belonging
to this group. In next step, the Principal Component Analysis
(PCA) is performed. Its goal is to reduce the dimension of energy
vector e. PCA is the statistical method defining the linear
transformation of the form [9]:

y = Wx (3)

transforming data x = R" into vector y = R¥ using the matrix

W c R*" in such a way, that the output space y of the reduced
dimension K<N preserves the most important information of the
input space x. Let x be the random vector of zero mean and Ry
the correlation matrix of all vectors x;. The correlation matrix is
symmetrical and non-negative defined. It means that all
eigenvalues of Ry, are real and non-negative. Let the orthogonal
eigenvectors associated with A4, be denoted by w;. We arrange the

eigenvalues in decreasing order, 4, >4, >...> 4, and in similar

way the eigenvectors w; associated with them, then the correlation
matrix Ry, can be reconstructed as:

N
R, :Z/’i’iwiwiT O]
=1

At orthogonal vectors w; their contribution to the correlation
matrix is measured by the value of the corresponding eigenvalues
A;. In most of the practically important cases only small fraction

of eigenvalues are large enough to contribute significantly to the
reconstruction of R, Therefore for K<N most important
eigenvalues the reconstruction of original vector x denoted here by
X can be written [9]:

£=W'y, W=[ww,..w.] (10)

PCA transformation was applied to each group of data. Seven
eigenvectors having the largest eigenvalues have been chosen.
Fig. 5 presents distribution of data belonging to normal state of
railway (inner part) and data belonging to head-checking defect
(outer part) for two most important eigenvectors.
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Fig. 5. Distribution of two group data for two most important eigenvectors
Rys. 5. Rozktad dwoéch grup danych dla dwoch najbardziej znaczacych wektorow

5. Classifier

SVM network has been used for the signal classification. SVM
network generates the hyperplane separating two group of data.
Hyperplane equation has the following form [10]:

y(x)sz(D(x)+b=iwj(pj(x)+b:0 11

where ¢(x)is the function transforming N-dimensional input
space into K-dimensional feature space, and w is the synapses
vector. If the input vector x satisfies relation y(x)>0 then it
belongs to first class, otherwise it belongs to second class. The
learning of SVM ensures maximization of distance between the
nearest data belonging to different classes and is accomplished by
quadratic programming. When classifying data are linear
inseparable the final optimal form of hyperplane is [10]:

»(x)= Ni:aidiK(xaxi)"'b (12)
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where Ngy is the number of Support Vectors for which Lagrange
multipliers ¢, occurring in quadratic programming have nonzero

values, K(x, x;) is a kernel function having polynomial or gaussian
form and d; having -1 if x; belongs to first class and +1 if x;
belongs to second class.

400 samples for every group have been used to learn each SVM
network. After learning the generalization of networks has been
tested on other group of data not attending in learning process. 180
samples of testing data for every group have been chosen at
random. Learned networks misclassify 41 samples out of 180 what
yields 23% misclassification.

6. Conclusion

Because signals generated with the use of metal magnetic
memory method are very difficult to interpretation, obtained 23%
misclassification seems to be satisfying result. Obtained
classification score is comparable with outcome coming from
traditional fully computerized diagnostic systems detecting
railway defects with the use of ultrasonic method.
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