PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biologically inspired hovering flight stabilization for the flapping wings micro air vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Biologicznie inspirowana stabilizacja zawisu mikrosamolotu napedzanego machającymi skrzydłami
Języki publikacji
EN
Abstrakty
EN
MA V flight stability and control presents some difficult challenges. The low moments of inertia of MA Vs make them vulnerable to rapid angular accelerations, a problem further complicated by the fact that aerodynamic damping of angular rates decreases with a reduction in wingspan. Another potential source of instability for MA Vs is the relative magnitudes of wind gusts, which are much higher at the MA V scale than for larger aircraft. In fact, wind gusts can typically be equal to or greater than the forward airspeed of the MAV itself. Thus, an average wind gust can immediately affect a dramatic change in the vehicle's flight path. Other problem occurs with influence of flapping wings on MA Vs body motion. The birds and flying insects, the biological counterpart of mechanical MA Vs, can offer some important insights into how one may best be able to overcome these problems. Biological systems, while forceful evidence of the importance of vision in flight, do not, however, in and of themselves warrant a computer-vision based approach to MA V autonomy. Fundamentally, flight stability and control requires measurement of the MA Vs angular orientation. While for larger aircraft this is typically estimated through the integration of the aircraft's angular rates or accelerations, a vision-based system can directly measure the MA Vs orientation with respect to the ground. The two degrees of freedom critical for stability the bank angle and the pitch angle can be derived from a line corresponding to the horizon as seen from a forward facing camera on the aircraft. Therefore, we have developed a vision-based horizon-detection algorithm that lies at the core of our flight stability system.
PL
Celem pracy było opracowanie koncepcji detekcji położenia przestrzennego mikrosamolotu z machającymi skrzydłami (tzw. entomoptera) oraz przeprowadzenie szeregu eksperymentów numerycznych z wykorzystaniem modelu symulacyjnego. Koncepcja sterowania była inspirowana metodą wykrywania położenia przestrzennego spotykaną u owadów. Wiele gatunków owadów swoją orientację przestrzenną ustala wykorzystując organ zwany przyoczkami. Przyoczka są rodzajem czujników optycznych. Czujniki te łatwo zamodelować przy pomocy czterech fotodiod umieszczonych na piramidalnym statywie. Fotodiody te mierzą natężenie światła w otoczeniu owada. W pracy przedstawiono uproszczony model matematyczny entomoptera, oraz zaprezentowano rozważania dotyczące efektywności detekcji położenia za pomocą pomiaru natężenia światła. Podano także matematyczny model przyoczek. Następnie przedstawiono wyniki badań symulacyjnych dowodzących efektywności przyoczek. Symulacje prezentujące przebiegi odpowiednich sygnałów przeprowadzono wykorzystując program MATLAB.
Rocznik
Strony
75--91
Opis fizyczny
Bibliogr. 49 poz., rys., wykr., wzory
Twórcy
  • Białystok Technical University
autor
  • Białystok Technical University
Bibliografia
  • [1] Adams J. F.: Vector fields on spheres, Ann. Math., vol. 75, no. 3, pp. 603–632, 1962.
  • [2] Arnold V. I.: Ordinary differential equations. Berlin: Springer-Verlag, 1992.
  • [3] Azuma A., Masato O. and Kunio Y.: Aerodynamic characteristics of wings at low Reynolds Numbers. Fixed and flapping wings aerodynamics for micro air vehicle applications, Ed T. J., Mueller, Progress in Astronautics and Aeoronautics, AIAA, Reston, 2001, pp 341-398.
  • [4] Azuma A.: The biokinetics of flying and swimming, Springer Verlag, Tokyo, 1998.
  • [5] Choromański P.: Modeling and simulation of flying insect space detection system - in aspect of flapping wings Micro-Aerial-Vehicle (MAV) hovering flight stabilization, M. Sc. dissertation, Faculty of Mechanical Engineering, Białystok University of Technology, Białystok, 2006 (In Polish).
  • [6] Deng X., Schenato L., and Sastry S.: Model identification and attitude control scheme for a micromechanical flying insect, Proc. 7th Int. Conf. ICARCV, Singapore, Dec. 2002, pp. 2112–2118.
  • [7] Dickinson M. H.: Directional sensitivity and mechanical coupling dynamics of campaniform sensilla during chordwise deformations of the fly wing, J. Experimental Biology, vol. 169, 1992, pp. 221–233.
  • [8] Dickinson M. H., Palka J.: Physiological properties, time of development, and central projection are correlated in the wing mechanoreceptors of Drosophila, J. Neuroscience, vol. 7, no. 12, 1987, pp. 4201–4208.
  • [9] Dickinson M. H.: Comparison of encoding properties of campaniform sensilla of the fly wing, J. Experimental Biology, vol. 151, 1990, pp. 245–261.
  • [10] Dudley R.: The biomechanics of insect flight: form, function, evolution. Princeton, NJ: Princeton Univ. Press, 2000.
  • [12] Ellington C. P.: The aerodynamics of hovering insects flight. III Kinematics. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences, 305 (1122), 1984, pp. 41-78.
  • [13] Ellington C. P.: The novel aerodynamics of insect flight: applications to micro-air-vehicles, The Journal of Experimental Biology, 202, 1999, pp. 3439–3448.
  • [14] Fearing R., et all.: Wing transmission for a micromechanical flying insect, Proc. IEEE Int. Conf. Robotics and Automation, San Francisco, CA, Apr. 2000, pp. 1509–1516.
  • [15] Gessow A., Myers G. C.: Aerodynamics of the helicopter, College Park Press, 1985.
  • [16] Gnatzy W., Grünert U., and Bender M., Campaniform sensilla of Calliphora vicina (Insecta, Diptera). I. Topography, Zoomorphology, vol. 106, no. 5, 1987, pp. 312–319.
  • [17] Godbillon C.: Dynamical systems on surfaces. Berlin: Springer-Verlag, 1983.
  • [18] Goraj Z., Pietrucha J.: Basic mathematical relations of fluid dynamics for modified panel methods, Journal. of Theoretical and Applied Mechanics, vol. 36, no. 1, 1998, pp. 47-66.
  • [18] Gottlieb D. H.: Vector fields and classical theorems of topology, Rendiconti del Seminario Matematico e Fisico di Milano, vol. 60, 1990, pp. 193–203.
  • [19] Grünert U., Gnatzy W.: Campaniform sensilla of Calliphora vicina (Insecta, Diptera). II. Typology, Zoomorphology, vol. 106, no. 5, 1987, pp. 320–328.
  • [19] Hegstenberg R.: Multisensory control in insect oculomotor system, Visual Motion and Its Role in the Stabilization of Gaze, F. A. Miles and J. Wallman, Eds. Amsterdam: Elsevier, 1993, pp. 285–298.
  • [20] Kastberger R.: The ocelli control the flight course in honeybees, Physiol. Entomol., vol. 15, 1990, pp. 337–346.
  • [21] Katz J., Plotkin A.: Low-speed aerodynamics – from wing theory to panel methods, McGrow-Hill, 2000.
  • [22] Keil T. A.: Functional morphology of insect mechnoreceptors, Microscopy Res. Technique, vol. 39, no. 6, 1997, pp. 506–531.
  • [23] Krapp H. G., Hegstenberg R.: Estimation of selfmotion by optic flow processing in single visual interneurons, Nature, vol. 384, no. 6608, 1986, pp. 463–466.
  • [24] Lasek M., et all.: Analogies between rotary and flapping wings from control theory point of view, 2001, AIAA paper no. 2001-4002.
  • [25] Lasek M., Sibilski K.: Analysis of flight dynamics and control of an Entomopter, AIAA paper no 2003-5707, 2003.
  • [26] Lasek M., et all.: A study of flight dynamics and automatic control of an animalopter, Proc. of the 23rd International Congress of Aeronautical Sciences ICAS 2002, ICAS 2002-5.5.3 CP, Toronto, 2002.
  • [27] Lasek M., Pietrucha J., Sibilski K.: Micro air vehicle manoeuvres as a control problem of flexible flapping wings, AIAA Paper no. 2002-0526, 2002.
  • [28] Lasek M., Sibilski K., Modeling and simulation of flapping wing control for a micro-electromechanical flying insect (Entomopter), AIAA 2002-4973 CP, 2002.
  • [29] Marusak A., et all: Mathematical modelling of flying animals as aerial robots, 7th IEEE Inter. Conf. on Methods and Models in Automation and Robotics (MMAR 2001), Międzyzdroje, Poland, Aug. 28-31, 2001.
  • [30] Motazed B., D. Vos D., and M. Drela M.: Aerodynamics and flight control design for hovering MAVs, Proc. American Control Conf., Evanston, IL, June 1998, pp. 681–683.
  • [31] Pornsin-Sisirak T., et all.: MEMS wing technology for a battery-powered ornithopter, 13th IEEE Inter. Conf. on Micro-Electro-Mechanical Systems (MEMS ‘00), Miyazaki, Japan, Jan. 23-27 2000.
  • [32] Sastry S.: Nonlinear systems: analysis, stability, and control. New York: Springer, 1999.
  • [33] Schenato L.: Analysis and control of flapping flight: from biological to robotic insects, PhD dissertation, University of California at Berkeley, 2003.
  • [34] Schenato L., Deng X., and Sastry S.: Hovering flight for a micromechanical flying insect: modeling and robust control synthesis, 15th IFAC World Congress Automatic Control, Barcelona, Spain, July, 2002, pp. 235–240.
  • [35] Schenato L., Deng X., Wu W. C., Sastry S.: Virtual Insect Flight Simulator (VIFS): A software testbed of tnsect flight, IEEE International Conference on Robotics and Automation, Seoul, South Korea, May, 2001, pp. 3885–3892.
  • [36] Schenato L., Wu, W. and Sastry S.: Attitude control for a micromechanical flying insect via sensor output feedback, IEEE Transactions on Robotics and Automation, Vol. 20, No. 1, February, 2004.
  • [37] Schuppe H. and Hengstenberg R.: Optical properties of the ocelli of Calliphora erythrocephala and their role in the dorsal light response, J. Compar. Biol. A, vol. 173, 1993, pp. 143–149.
  • [38] Shyy W., Berg M. and Ljungqvist D.: Flapping and flexible wings for biological and micro air vehicles, Progress in Aerospace Sciences, , Vol. 35, 1999, pp. 455-505.
  • [39] Smith M. J. C., Wilkin P. J., Williams M. H.: The advantages of an unsteady panel method in modelling the aerodynamic forces on rigid flapping wings, Journal of Experimental Biology, 1996, Vol. 199, pp. 1073 - 1083.
  • [40] Strausfeld N. J.: Atlas of an insect brain. Berlin & New York, Springer-Verlag, 1976.
  • [41] Taylor C.: Contribution of compound eyes and ocelli to steering of locusts in flight: II. Timing changes in flight motor units, J. Experimental Biol., vol. 93, 1981, pp. 19–31.
  • [42] Taylor C.: Contribution of compound eyes and ocelli to steering of locusts in flight: I. Behavioral analysis, J. Experimental Biol., vol. 93, 1981, pp. 1–18.
  • [43] Taylor G. K. and Thomas A. L. R.: Dynamic flight stability in the desert locust Schistocerca gregaria, J. Experimental Biology, vol. 206, no. 16, 2003, pp. 2803–2829.
  • [44] Tobalske B. W., Dial K. P.: Flight kinematics of blackbilled magpies and pigeons over a wide range of speeds, Journal of Experimental Biology, 1996, Vol. 199, pp. 263–280.
  • [45] Willmott A. P., Ellington C. P.: The mechanics of flight in the hawkmoth manduca sexta. Part I. Kinematics of hovering and forward flight; Journal of Experimental Biology, no. 200, 1997, pp. 2705–2722.
  • [46] Wu W., et all.: Biomimetic sensor suite for flight control of a micromechanical flight insect: design and experimental results, Proc. IEEE Int. Conf. Robotics and Automation, vol. 1, Taipei, Taiwan, Sept. 2003, pp. 1146–1151.
  • [47] Yan J, et all.: Toward flapping wing control for a micromechanical flying insect, Proc. IEEE Int. Conf. Robotics and Automation, Seoul, South Korea, May, 2001, pp. 3901–3908.
  • [48] Zbikowski R.: Flapping wing technology, Proc. European Military Rotorcraft Symp., Shrivenham, U. K., March 21–23, 2000, pp. 1–7.
  • [49] Żbikowski R.: On aerodynamic modeling of an insectlike flapping wing in hover for micro air vehicles, Philosoph. Trans. Roy. Soc. London (Series A: Math., Physical and Eng. Scis.), vol. 360, no. 1791, 2002, pp. 273–290.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW4-0043-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.