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The paper presents a method for determination of
damping during in-flight flutter tests. The method is based
on a new estimate of the correlation function. Actually, the
necessity has emerged of a new estimator of the autocor-
relation function which, when applied to finite unsteady
signals of short duration, does not change the values and
signs of damping coefficients. The paper provides theo-
retical backgrounds of the proposed method. The new cor-
relation function was applied to the ANDAT procedure
[4,5,6] for flutter analysis. The procedure was verified
based on both simulation data and in-flight vibration
measure ments.
Keywords: Flight tests, vibration measurement, damping
coefficients, autocorrelation function.

1. INTRODUCTION

The flight flutter tests are performed on the prototype
versions of new or significantly modified commercial and
military aircraft in order to demonstrate freedom from flutter
over the entire flight envelope.

Traditionally, the most widely used indicators of the
stability in aeroelastic systems are the values of modal
damping coefficients and their airspeed-variations. In the
typical flight flutter tests, the damping coefficients for all
significant modes are evaluated at a number of sub critical
speeds using the system identification methods. Classical
methods for flight flutter investigations require a special
excitation of vibrations. These vibrations can be forced in a
harmonic, impulse or stochastic way.

Up till now the ANDAT system has been used at the
Institute of Aviation to analyze these vibrations.

The ANDAT software package is based on the least-
square-technique in time domain, employing the time-
frequency method for the analysis of impulse responses. The
modes of importance are determined using a statistical
method in terms of the rest sum of squares procedure (F-
Snedecor distribution). The frequency and damping coef-
ficients are determined versus the airspeed. The ANDAT
system employs the real and imaginary parts of the Fourier
transform for the determination of vibration phase.

One of the aims of the FliTE project consists in the
development of flight flutter test techniques under natural
excitation conditions [8], with no additional control surface
excitation applied. To make the flight flutter tests under
natural excitation conditions (in normal flight), the impulse
response can be replaced with the autocorrelation function of
the measured vibration signals. This function represents the
same frequency and damping factors as the infinite response
function.

The estimators of autocorrelation function being used now
[2,7] were developed for stationary signals and when applied
to the analysis of signals of finite duration they can produce
errors in the determination of damping coefficients.

Therefore, the necessity has emerged for determination of
a new estimator of the autocorrelation function, which when
applied to finite unsteady signals of short duration does not
change the values and signs of damping coefficients. 

The paper provides theoretical backgrounds of the
proposed method. The new estimator of the correlation
function was applied to the ANDAT procedure for flutter
analysis. The procedure was verified using both the model
data and the real data from in-flight vibration measurements.

2. DETERMINATION OF THE 

AUTOCORRE LATION FUNCTION ESTIMATOR

FOR NON STATIONARY PROCESSES

In the literature on the possibilities of replacement of the
impulse response signal with the autocorrelation function of
this signal when calculating the damping coefficients, in the
course of proving their equivalence, the following formula
was obtained:
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Rijk is the cross-correlation function defined for two response
signals at points i and j, that result from the white noise
excitation applied at point k,
αk is the correlation function of the white noise at point k,
Ψir is the i-th component of r-th vibration form,
Ψkr is the k-th component of r-th vibration form,
Ψjs is the j-th component of s-th vibration form,
Ψks is the k-th component of s-th vibration form.
The formula for gr(t) has a similar form.

The integral appearing in Eq. (1) stands therefore for the
cross-correlation function between the signals gs(t) and gr(t).
For the objects with positive damping coefficients of
vibrations these signals reveal the nature of free decaying
signals (nonstationary).

The estimator of autocorrelation function commonly
applied to stationary processes of finite duration cannot be
used in this case. For example, the MATLAB package
provides the following unbiased estimator of autocorrelation
function of a discrete stationary signal of finite duration (for
the sake of simplicity hereinafter we consider only the auto-
correlation function):

(3)

This estimator, however, changes the values of damping
coefficients of non-stationary signals, the detailed reasons
behind that will be presented below.

Let us now search for some hints about the determination
of the autocorrelation function estimator for damped , expo-
nential increasing or stationary signals.

It is well-known that for the decaying infinite (from 0 to
+∝) signal, the integral appearing in Eq. (1) can be deter -
mined and damping coefficient of autocorrelation function is
equal to the damping coefficients of the signal under con -
side ration.

It should be noted, however, that the real signals we deal
with are of finite duration and the integral is calculated over
that very finite duration (being approximated in terms of
a sum) not up to infinity.

Thus, we have arrived at the first conclusion that a definite
integral over a constant range should appear in the formula
for the sought estimator of autocorrelation function , i.e. the
sum should have constant limits, independent of the shift τ:
despite of the value of k. Therefore the estimator given in
Eq. (3) does not satisfy this condition since the calculated
sum depends on k.

To simplify the process of finding the required properties
of the estimator that does not change the values of damping
coefficient let us deal with the integral for a sample signal:

(4) 

For this signal we have:

(5)

It can be clearly seen that the autocorrelation function for
the exponential curve has not changed the value of the
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exponent λ (the damping, e. q. in the impulse response signal
λ = ζω0) replacing however the initial value 1 with 1/2λ.

Let us ask the question if there exists the estimator of the
considered exponential function over a finite interval that
does not change the value of damping coefficient λ.

We can answer the question by means of calculation of the
integral given above from 0 to T :

(6)

It can be found that for a finite duration for the considered
signal the integral can be calculated and the resulting auto-
correlation function does not change the value and sign of
the coefficient λ. Only the initial value of autocorrelation
signal has been changed.

It should be noted that before assuming the upper limit of
integration as T, one should know the segment of the con-
sidered function exp[- λ (t + τ)] within the interval from 0 to
(T + τmax).
Let us analyse in detail what the above formula for trans -
forma tion really means, using the following diagram (see
Fig. 1).

Fig. 1

The integral is calculated in terms of determination of the
marked area. The value of autocorrelation function for the
shift τ is represented by the marked area. Therefore, the cal-
culation process of autocorrelation function consists in cal-
culating of the area (for t within the {0-T} interval) under a
segment of the signal shifted along the considered signal.
For the initial location (τ = 0), one obtains the maximal
value of autocorrelation function, while the minimal one is
observed for τmax location, when the end of the shifted signal
coincides with the end of the considered one. Generally,
when one deals with a signal of, e.g. 2s duration, then if a
signal of 1 s duration is shifted, the maximum shift τmax can
be only 1 s. Generally, the formula for maximum shift τmax
for the segment duration T and the considered signal
duration Tp , respectively, can be written as:

τmax = Tp – T (7)
Therefore we can assume, e.g., that T = Tp/2 and then:

τmax = Tp/2.
For a discrete signal the aforementioned calculation rules

take the following estimator form: 

(8)

where: kΔt = τ k = 0,1,2,..., N/2
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nΔt = t
(N/2)Δt = T
N – represents the number of samples in the 
signal: NΔt = Tp.

To reveal clearly the differences as compared to that
obtained from Eq. 3 the result of calculations is divided by
N/2 (the division by a constant number does not affect the
value of λ). In practice, dividing the result by N/2 makes the
codomain of autocorrelation function and the values of the
considered signal closer to each other.

Graphical rules for the determination of autocorrelation
function as shown in Fig. 1. for the proposed estimator (see
Eq. 8) can be also formulated for the unbiased estimator (see
Eq. 3) for stationary signals, applicable also to visibly non-
stationary signals (see Fig. 2).

Fig. 2

It can be clearly seen from the picture that the shifted seg -
ment changes its duration depending on the value of shift τ.
The segment duration reads:

T(k) = Tp – τ
Roughly speaking in terms of changing the segment

duration we change the calculation rules. At the same time,
the fact that the calculation results are divided by the
segment duration (N – k) affects the average segment
duration growth as the shift τ rises for decaying signals. As
a result we obtain higher calculation results and lower values
of the coefficient λ of the calculated autocorrelation function
as compared to the coefficient of the considered signal.
It should be emphasised, however, that the fact that the
results were divided by the segment duration allowed for
obtaining of the unbiased estimator of autocorrelation
function for steady signals.

The proposed estimator of autocorrelation function for
exponent decaying , increasing or stationary signals can be
considered as a tool for time-frequency analysis of non-sta-
tionary signals. It can be therefore applied to the analysis of
momentary dynamical properties of non-stationary
processes.

3. VERIFICATION OF THE PROCEDURE

To verify that the new estimator can be used for the time-
fre quency analysis of non-stationary signals, a number of
analyses have been carried out at the Institute of Aviation in
Warsaw, Poland.
The following three methods were taken into account:
• ANDAT1 procedure, in which the impulse responses is

analysed with no autocorrelation function introduced; 
• ANDAT1acp procedure, which uses the proposed

estimator of autocorrelation function;
• ANDAT1unb procedure, which employs the estimator of

autocorrelation function obtained from the MATLAB
package.

The following types of vibrations representative of the
problem were analyzed:
• Damped model vibrations - the results obtained are shown

in Table 1
• Damped real vibrations measured on the aircraft wing after

buffeting – the results obtained are shown in Table 2
• Model vibrations with increasing amplitude - the results

obtained are shown in Table 3
• Stationary model vibrations - the results obtained are

shown in Table 4

Tab.1

Tab.2

Tab.3

Tab.4

The obtained results prove that the proposed estimator
does not change the damping coefficients (both the value
and sign remain unchanged). The autocorrelation function of
exponent decaying signal is a signal of the same frequency
components and the same damping coefficients; i.e., a
decaying signal. The autocorrelation function of an increa -
sing signal is an increasing signal. The proposed estimation
of autocorrelation function for a stationary signal is a sta-
tionary signal.
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4. FINAL REMARS

Finally, let us present a concise calculation algorithm of
the proposed estimator of autocorrelation function.

A new estimator of the autocorrelation function:

The data from measurements: y(i) i = 1, 2, 3,…, N

Computation procedure for the FFT [1] autocorrelation:

The data from measurements: y(i) i = 1, 2, 3,…, N
Define yp(i) data:

yp(i) = y(i) i = 1, 2, ..., N/2
yp(i) = 0 i = N/2+1, ..., N

Compute the discrete transform of y(i) and yp(i):
Y(j) = FFT[y(i)]

YP(j) = FFT[yp(i)]
Compute the product:

Yyy(j) = Y(j) YP*(j)                j=1,2,3,…,N

Averaging:

Compute the inverse transform:

Ryy(k) =(2/N)• FFT-1[Yyy(j)]            k = 0, 1, 2, 3,…, N/2-1
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ZASTOSOWANIE FUNKCJI KORELACJI DO 
WYZNACZANIA WSPÓŁCZYNNIKA TŁUMIENIA

W CZASIE PRÓB FLATTEROWYCH W LOCIE

Artykuł prezentuje metodę wyznaczania tłumienia w
czasie prób flatterowych w locie. Metoda oparta jest o nową
estymację funkcji korelacji. Prezentowany estymator funkcji
autokorelacji, zastosowany do skończonych, nies-
tacjonarnych, krótkich sygnałów nie zmienia wartości i
znaków wyznaczonych współczynników tłumienia.

Artykuł przedstawia teoretyczne podstawy proponowanej
metody. Metoda ta zastosowana została w procedurze
analizy flatterowej ANDAT. Testowano ją stosując sygnały
symulowane oraz zarejestrowane w czasie prób w locie.

Praca zrealizowana w ramach programu EUREKA
E!2419 „FLITE”.

Ф. Ленорт, А. Непокульчицки

ПРИМЕНЕНИЕ ФУНКЦИЙ КОРРЕЛЯЦИИ ДЛЯ
ОПРЕДЕЛЕНИЯ КОЭФФИЦЕНТА

ДЕМПФИРОВАНИЯ ВО ВРЕМЯ ФЛАТТЕРНЫХ
ЛЕТНЫХ ИСПЫТАНИЙ

В стате представлен метод определения демпфиро -
вания во время флаттерных летных испы таний. Метод
основан на новой эстимации функции корре лации.
Представляемый эстиматор функции авто корреляции
примененный к конечным, нестацио нарным, корот ким
сигналам не меняет величины и знаков опреде ленных
коэффициентов демпфирова ния. В статье обсуждаются
теоретические основы предлагаемого метода. Метод был
применен проце дуре флаттерного анализа ANDAT.
Тестиро вали его применяя имита ционные и
зарегистрован ные сигна лы во время летных испытаний.
Работа была осуществлена в рамках программа EUREKA
E! 2419 „FLITE”.




