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Abstract

A notion of positive linear discrete-time systems with multiple delays
in state and control is introduced. The necessary and sufficient conditions
for positivity, reachability and minimum energy control are given.
Considerations are illustrated by example.
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Osiggalnosé¢ i sterowanie z minimalng energia
liniowych dodatnich uktadéw dyskretnych
z wieloma opdéznieniami stanu i sterowania

Streszczenie

W pracy podano warunki, przy spetnieniu ktorych liniowy dyskretny uktad
z wieloma opdznieniami zmiennych stanu i sterowania jest ukfadem
dodatnim. Podano tez warunki konieczne i wystarczajace osiagalnosci oraz
sterowania z minimalng energia. Rozwazania zilustrowano przyktadem.

Stowa kluczowe: liniowy uklad dodatni, dyskretny, opdznienie,
osiggalnos¢, sterowanie z minimalng energia.

1. Introduction

In positive systems inputs, state variables and outputs take only
non-negative values for non-negative initial states and non-
negative controls. Industrial processes involving chemical
reactors, heat exchangers and distillation columns, storage
systems, compartmental systems, water and atmospheric pollution
models are examples of positive systems. A variety of models
having positive linear systems behavior can be found in
engineering, management science, economics, social sciences,
biology and medicine, etc. Positive linear systems are defined on
cones and not on linear spaces. Therefore, the theory of positive
systems is more complicated and less advanced. An overview of
state of art in the positive systems theory is given in the
monographs [4, 5].

Recently some results known for standard linear positive
systems have been extended for positive systems with time-delays.
The conditions for reachability and minimum energy control of
positive discrete-time systems with delay in state were given in
[2]. The problem of reachability and controllability of linear
positive discrete-time systems with delays in control or in state
was discussed in [8]. An overview of some recent developments in
theory of positive discrete-time linear systems with delays in state
was presented in [3] and [6].

The aim of this paper is to give the notion of the internally
positive linear discrete-time systems with multiple delays in state
and control and necessary and sufficient conditions for the internal
positivity, reachability and minimum energy control.

To the best of the authors' knowledge, the reachability and
minimum energy control problems for positive discrete-time
systems with multiple delays in state and control have not been
studied yet.

2. Preliminaries

Let ™™ be the set of nxm matrices with entries from the
field of real numbers and R” = R™. The set of nxm matrices
with real non-negative entries will be denoted by R”" and
R” =R, The set of non-negative integers will be denoted by
Z..

Consider the discrete-time linear system with delays described
in the state space by the equations

h q .
Xiy1 = kZ::oAkka + Z:OBju[—f’ ieZ, (la)
y; =Cx, + Du,, (1b)

where / and g are positive integers, x, e R", u, e R", y, eR’
are the state, input and output vectors, respectively,
4, e R (k=01...h), B eR"™ (j=0l..,9), CeR™,

D e R,
The initial conditions for (1a) are given by

x,€R" (i=0L..h), u, eR" (j=12,...9). 2

The general form of the solution of state equation (la) is as
follows [1]

—1 h+j+l
x,=00)x,+ X X Pli-k)4, x,

j=h k=1
=1 q+j+1 .
+3 O(i-k)B,_,_u, 3)
J==q k=l
i-1
+3 3 D(i-1-k- j)Bu,,
J=0k=0
where
h
®@)=Z2"{(zl, - X 4,275z} 4)
k=0

is the state-transition matrix and Z~' denotes the inverse
z-transform.
The state-transition matrix (i) satisfies the equation
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D +1)=A4, D@+ ADPE—1)+...+ 4,D(—h) ©)
with the initial conditions
®0)=1,, @(@)=0 fori<0. (6)

Definition 1. The system (1) is called (internally) positive if
x,eR’ and y,eR’ (ieZ,) for every x,eR!, u, R,
i=01..h j=12,.,q andallinputs u, e R", ieZ,.

Theorem 1. The system (1) is internally positive if and only if

A, € R (k=0,L...,h),B, € R (j=0,l,....q),

- xm (7
CeRI".DeRI™.
Proof. Defining
X, u,
Xin =
= i |ew, m= eR”, (3)
Xihst i—g+1
Xio i~
[ 0 Al Ah—] Ah_
I, 0 0 0
A= \ (%)
0 0
| 0 I, |
(B, B, B, B,
0o 0 - 0 O
A (©b)
0o 0 -~ 0 O
c=[c o -~ 0ol D=[p 0 - 0] 9¢)
equations (1) can be written in the form
%, =A%, +Bu, ieZ, (10a)
v, =Cx, + D, (10b)
where 7 =(h+n, fii=(q+1)m and
X, u,
X u_,
=] |eR, m=| i |eR™ an
Xopa U gn
Xon Uy

System (10) is called (internally) positive if x e®R” and
v, eR? (ieZ,) for every x,eR” and any input sequence
meRl, ieZ,.

In [4] and [5] it was shown that system (10) is positive if and
only if

AeRT" BeR”",.CeR",DeRV. (12)

Hence, system (1) is positive if and only if the matrices 4, B,
C and D satisfy conditions (12) that are equivalent to (7). H

3. Reachability

For simplicity it will be assumed that #=¢ in (la). The case
h # q is similarly analyzed.

Definition 2. A state x, € R] is called reachable in N steps if

there exists a sequence of inputs u, € R}, i=0,1,..,N -1, that
transfers the system (1) from zero initial conditions (2) to the state
X,

!

Definition 3. If every state x, € R’ is reachable in N steps then
the system is called reachable in N steps.

Definition 4. If for every state x, € R! there exists a natural
number N such that the state x, is reachable in N steps then the
system is called reachable.

Recall that the set X < R” is called the cone if the following
implication holds: if xe X then axe X for every aeR,. The
cone X is called convex if for any x,x, € X every point of the
line segment x=(1-A)x, +Ax, € X for 0 <A <1. The cone X is
called solid if its interior contains the sphere K(x,r) with the
center at the point x € X and radius r.

Theorem 2. The set of reachable states of positive system (1) is

a positive convex cone. This cone is solid if and only if there
exists an N € Z, such that the rank of the reachability matrix

Ry =[Y(N-D,¥Y(N -2),--,¥(1),¥(0)], (13)
is equal to n, where

W(i) = YD - kB, (14)

and @(i) is the state-transition matrix.

Proof. For x,=0 (i=0l..h), u ;=0 (j=12,..,9) and
i=N >0 solution (3) of (1a) has the form

N-1 h v
Xy =X YO(N-1-k-j)Bu, =R, (15)

J=0k=0

where R, has form (13) with W(i) defined by (14) and
uy = . (16)

If rankR, =n then from (15) it follows that if ) steers
system (1) from zero initial conditions to x,, then ou, steers this
system from zero initial conditions to ox, for every o eR.

Therefore, the set of states which are reachable in N steps is
a cone.
Let X, denotes the positive cone of reachable states of positive

system (1).
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— _ p =N ~ _ p N
If x, =Rz, € X, and %, =R,&1," € X,,, then

(1-M)x, +A%, = (1-MR @) +AR, )
=R, [(1-0Mz +1) 1= Ry € X,,.

where v = (1-A)a,’ + A&}, Hence, the cone X, is convex.
Let K(0,e) be the sphere with the center x =0 and radiuse.
From the assumption rankR, =n it follows that the system is

reachable if the input is unbounded. In this case there exists an
input Ay, that steers the state of system (1) to an arbitrary point

inside the sphere. From the linearity of the system and
superposition principle it follows that the input #) + Au;’ can steer

the system to an arbitrary point inside the sphere K(x,¢), where
u,’ is the input that steers system (1) to x. The input Au,’ can be
chosen so that all entries of u) +Au, are non-negative and
K(x,g) = X . Hence, the cone X is solid. On the other hand, if
X, contains the sphere K(x,&) then there exists an input Aw,’

that steers system (1) to an arbitrary point inside the sphere
K(0,g) only if rank R, =n. B

The cone X, of the reachable states of positive system (1)
usually increases with N, ie. X, <X, for N,>N,. The

following theorem gives the conditions under which this cone in
invariant with respect to N.

Theorem 3. The cone X, of reachable states of positive system
(1) is invariant for N > 7 = (h+1)n if and only if rankR, =» and
the coefficients of the characteristic polynomial

h
det(z""'1, - kZUAkz/”k)

17)
=det(zl, - A)=z"+a, 2" +..+az+a,
are non-positive, i.e. @, <0 for k=0,L....7 1.
Proof. In the same way as in [2] it can be proved that
O+ j)=—a, OFE+j-1)—..
—a®(j+1)—a,D()), JeZ.,. (18)

Hence, ®(7+ ;) for any jeZ, is a linear non-negative
combination of ®(j+k) (k=0,]1,.,7 1) if and only if o, <0,
k=01,.,7—1.

From (14) for i =# + j we have

‘P(ﬁ+j):é)cl)(ﬁ+j—k)3k, jez. (19)

Because B, e R”" for k=0,L,..,h, the matrix W(7+ ;) for
any jeZ, is a linear non-negative combination of ®(7 + j—k),
k=0,,.,h Hence, if rankR, =n, then X, =X, for all

j € Z, if and only if all the coefficients a, (k=0,l,...,7—1) of
polynomial (17) are non-positive. B

By definition 3 positive system (1) is reachable if and only if
the reachability cone is equal to R’.
Denote by Im, R, the positive image of the matrix

GnxNm 3
R, e R, le.
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Im, R, ={yeR" y=RuuecR™}. (20)

Theorem 4. Positive system (1) is reachable if and only if there
exists an N € Z, such that rankR, =» and

1) Im, R, =R/, where R, is defined by (13),
2) n linearly independent columns can be chosen from R, so that
the matrix R, constructed from them is a monomial matrix

(every row and every column has only one positive entry and
the remaining entries are equal to zero),
3) n linearly independent columns can be chosen from R, so that

the matrix R, constructed from them has the inverse R, ' with

non-negative entries, i.e. R;' e M.
Proof. If x, =x, in (15) then
X, = RNu(‘;V. (21)

From (21) it follows that for every x, e[ there exists
u) e R¥ if and only if the condition 1) is satisfied. If 1) is

satisfied then » linearly independent columns (being a base of
R" ) can be chosen from R, if and only if in every row and every

column only one entry is positive and all the remaining entries are
zero. The matrix constructed from these columns is a monomial
matrix. The inverse matrix of a positive matrix is positive if and
only if it is a monomial matrix [5]. Therefore, conditions 2) and 3)
are equivalent. B

From the above it follows that if the conditions of Theorem 3
hold then the cone of reachable states of positive system (1) is
invariant for N > # = (h+1)n. This means that if this system is not

reachable in N = steps, then it is not reachable in N > steps
(it is not reachable).

In certain cases the cone of reachable states may be invariant
for N <#. This follows from the fact that if s >1 then condition

rankR, =n can be satisfied for N <. In such a case, if the

conditions of Theorem 4 hold, then positive system (1) is
reachable in N <7 steps (see example below).

Theorem 5. Positive system (1) is reachable if there exists an
N € Z, such that the rank of the reachability matrix R, of form

(13) is equal to » and
RU[R Ry e RY™™. (22)

Moreover, if (22) holds then the sequence of controls u, € R”,
i=0,1,..,N—1, that transfer the system (1) from zero initial

conditions (2) to the desired final state x, € R, can be computed

from
Uy
ul

ul = RIRRIT'x, =| | (23)

uN 1

Proof. If rankR, = then det(R,R")=0 and the matrix RyRy

is nonsingular. If (22) holds and x, € R’ then u," € R and

xy =Ryuy = RyR[RyR\ "' x, = x,. (24)
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4. Minimum energy control

Consider positive system (1) with h=¢q in (la) and
a performance index

1) =S u, 25)

where O € ™" is a symmetric positive definite weighting matrix
such that
Q' eR™" (26)

and N is the number of steps, in which system (1) is transferred to
the state x .

Control sequence u, e R”, i=0,1,...,N —1, that minimizes the

performance index (25) is called minimal one. The problem of
minimum energy control was first solved in [7].

The minimum energy control problem for positive system (1)
with s1=q can be stated as follows. Given the matrices 4, € R"

and B; e R7" (k,j=0,,...,%), the number N of steps, the final
state x, € R} and a weighting matrix Q such that (26) holds. Find
a control sequence u, e R”, i=0,,..,N —1, that transfers system
(1) from zero initial conditions to the desired final state x, € R

and minimizes performance index (25).
Define the matrix
W =R, 0.Ry € R™, (27)
where R, is the reachability matrix of form (13) and
0, =diag[Q',..,0 "1 e R, (28)
From (27) it follows that the matrix W is non-singular if and

only if the matrix R, has full row rank, ie. the necessary
condition of reachability of positive system (1) holds.

Define the sequence of inputs 2, 4,, ..., 4, , by
a()
N ﬁ] ral T -1
4y =| . |=ORI x,. (29)
al\*l

From (29) it follows that ;" € R for any x, € R! if and only
if
O R\ e R, (30)

Theorem 7. Let the following assumptions hold:

e positive system (1) is reachable in N steps,

o condition (30) is satisfied,

e 7, eRY, i=01..,N-1, is any sequence of inputs which
transfer system (1) from zero initial conditions (2) to the desired
final state x, € R..

Then the sequence of inputs 2,, 4, ..., 2,_, defined by (29)

also transferring system (1) from zero initial conditions to the state
x, € R, minimizes performance index (25) and

1@)< 1(u). 3D

Moreover, the minimal value of (25) is given by
(@)= x;W'lxb,. (32)

Proof. If positive system (1) is reachable in N steps and (30)
holds, then 2, e R}, i=0,1,.... N —1.

From (15) for u," =4} and (29) it follows that
xy =Ryity = RO\ R\W 'x, =x,, (33)

because R,O.R\W ' =1, Hence, sequence of inputs (29)
provides xy = x,.

Since both w#,, w#, .., @, , and 2, 4,, .., 4, , transfer
system (1) from zero initial conditions to x,€W| then

x, =R, =Ry, and
R, @) —u)=0. (34)
From (29) it follows that R,V 'x, = O,'a,". Hence,
@) —a) Y R x, = @) —u) ) Oal =0, (39

where

O, =0, =diag[Q,...,0] e R (36)
Using (35) it is easy to show that
@) Oy = ()" Oty + (' —0y) Oy (' —ay)). 37)

The last term in (37) is always non-negative. Hence, inequality
(31) is true.
Substitution (29) into (25) yields

RO NAT N
(@)= ;}ﬁi on, = (ﬁo ) Qwﬁo

= (QNR;WAX/ )T QN(QN’R;WJX/)
=x, W RO RW "x, =x, W 'x,,

since 0,0, =1,, and W'R,O,Ry =1, W

Optimal control which minimizes performance index (25)
depends on the weighting matrix Q. From comparison (23) and
(29) it follows that control sequence (23) minimizes performance
index (25) with Q =/, . This means that u,' computed from (23)

is minimum energy control with a performance index

N-1 T
I(u)= Xu, u,
i=0

Theorem 8. Let the weighting matrix has the form Q=aqr ,

a>0. Then a) =u, where 2} and u) are defined by (29) and

(23), respectively. In such a case the optimal value of the
performance index can be computed from the formula

1() = ax;[R,Ry] 'x,. (38)

Proof. If O =al , then from (28) and (27) it follows that

Oy=a'l,,, W=a'R,R). (39
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Hence,

N ray Trr-1 -1 pT TN\~
% DR 3 = ek (40)
=Ry (RyRy) X, =u, .
Substitution of the second formula of (39) into (32) gives (38).
5. Example

Consider positive system (1) with =g =2 and the matrices

[0 0 0
4,=/0 0 0 |
[0 0 04]
(0.1 0 0]
4=10 0 0} (41a)
L0 0 0]
0 0 0
A4,=/0 01 0}
05 0 0
0 o]
B,=[1 0},
_0 0_
Lo
B, =0 0], (41b)
_0 O_
o o]
B,=|0 0}
,0 1;

Find the optimal control that transfers this system from zero
initial conditions to the final state x, = [1 2 4]T in three steps

and minimizes performance index (25) with

o=
-1 2]

The necessary condition for reachability in three steps is
satisfied because the reachability matrix

001000
R, =[¥(2),¥Y(1),¥(0)]=|0 0 0 0 1 0 (42)
010000

has a full row rank equal to 3.

It is easy to check that the conditions of Theorem 5 are satisfied
and the system is reachable in three steps.

The optimal control sequence computed from (29) has the form

(4
0, = 4
1
0 = , 43
: 0.5} )
.
a, = 0
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According to (32), the minimal value of performance index (25)
is I(#)=18.5.

The control sequence, which also transfers system (1) with the
matrices (41) from zero initial conditions to the final state

X, = [1 2 4]r , can be computed from (23). This control is of the
form

U, =
(44)

u, =

u2:

The optimal value of (25) for control sequence (44) is equal to
I(u)=37>1()=18.5.

6. Concluding remarks

Notion of the internally positive linear discrete-time systems
with multiple delays in state and control is introduced. The
necessary and sufficient conditions for the internal positivity,
reachability and minimum energy control are given.

The results of this study presented here can easily be extended
for positive discrete-time systems with different numbers of
delays in state and control and for multidimensional systems
with delays.

The work was supported by the State Committee for Scientific
Research in Poland under grant No 3 T11A 006 27.
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