Zygmunt Lech WARSZA

Polskie Towarzystwo Metrologiczne

Miary dokładności transmitancji mostka rezystancyjnego w przypadkach szczególnych

Doc. dr inż. Zygmunt Lech WARSZA

Ukończył Miernictwo Elektryczne w Pol. Warszawskiej 1959, doktorat 1967, docentura 1970. Organizował i prowadził: Wydział Transportu w Radomiu (dziekan 1970-76), Ośrodek Aparatury IMGW 1978-81, Zakład Techniki Pomiarowej Instytutu Chemii Przemysłowej 1983-91. Doradca Ministra Edukacji 1992-94. Wykładał metrologię do 2002 r. Opracował wiele prac konstrukcyjnych i badawczych, 2 monografie, około 100 publikacji i kilkanaście patentów. Prezes Polskiego Towarzystwa Metrologicznego.

e-mail: zlw@op.pl

Streszczenie

Omówiono błędy chwilowe i graniczne oraz średniokwadratowe miary losowe (błędy pozorne lub niepewności) transmitancji prądowonapięciowej w kilku przypadkach szczególnych czteroramiennego mostka rezystancyjnego jako czwórnika, tj.: przy różnych stosunkach wartości początkowych jego rezystancji i niezależnych oraz sprzężonych ich przyrostach w 4 lub 2 ramionach oraz przy zmiennym tylko jednym ramieniu. Wraz z odpowiednimi miarami transmitancji napięciowej zestawiono je w dwu tabelach. Wyznaczono też błędy napięcia wyjściowego mostka zasilanego prądowo.

Słowa kluczowe: dokładność, transmitancja, mostek rezystancyjny.

Accuracy measures of transmittance of variable resistance bridge in particular cases

Abstract

Instantaneous and limited systematic errors and mean square measures (random errors or uncertainties) of current to voltage transmittance in some particular cases of the four arm resistance bridge as two-port, i.e.: for different ratios of initial arm resistances in balance, different number (4, 2 or 1) of independently variable and jointed their increments, are found and discussed. Together with corresponding measures of voltages transmittance they are presented in two tables. Errors of the open-circuit output voltage of this bridge supplied by current are also discussed.

Keywords: accuracy, transmittance, resistance bridge.

1. Wstęp

Układy o strukturze mostka zaczęto stosować w technice pomiarowej przeszło 176 lat temu. Mostek czteroramienny ABCD z rys. 1 występuje w technice pomiarowej i diagnostyce w dwu podstawowych rolach:

- jako schemat zastępczy pasywnego układu cztero-zaciskowego (4T) o zmiennych immitancjach dla jego pracy jako czwórnika, gdy żadne dwa zaciski nie są zwarte i odwzorowuje się podstawowe zarówno zależności pomiędzy ich prądami i napięciami jak i rozkład potencjałów;
- jako podstawowy układ do wstępnego kondycjonowania sygnałów w pomiarach impedancji oraz innych wielkości przetwarzanych przez czujniki impedancyjne w inteligentnych przetwornikach i systemach pomiarowych.

Dokładność mostka analizowano w literaturze głównie w równowadze i blisko tego stanu przy małych i skojarzonych ze sobą przyrostach immitancji jego ramion.

Uogólnione, jednolite podstawy teoretyczne pomiarowych układów immitancyjnych o czterech zaciskach (4T) przy dowolnych wartościach przyrostów ich immitancji wewnętrznych i przy różnym, w tym niekonwencjonalnym dwuprądowym zasilaniu, autor przedstawił w monografii [1] zawierającej też syntezę jego poprzednich prac oraz w kilku następnych publikacjach [2-4, 5, 9]. Obejmują one pomiary jednej (1D), oraz równocześnie dwu (2D) i większej liczby wielkości. Podano tam uogólnione związki zewnętrznych parametrów mostka i jego wewnętrznych rezystancji. tj. transmitancje i rezystancje wejściowe w wartościach bezwzględnych i względnych oraz wyznaczono ich miary dokładności. Nawet przy krańcowych wartościach (0, ∞) rezystancji zastępczych źródła R_G i obciążenia na wyjściu CD zależności te są dość zawiłe.

Rys. 1. Mostek czteroramienny jako nieobciążony czwórnik typu X wraz z gałęzią źródła zasilającego

Wzory ogólne wykorzystuje się w badaniach zmian parametrów wewnętrznych schematu zastępczego czwórnika X poprzez pomiary na jego zaciskach. Wartości początkowe i przyrosty jego immitancji oraz ich miary dokładności mogą być w tym przypadku dowolne.

Natomiast w technice pomiarowej stosuje się szczególne przypadki mostka o zasilaniu z idealnego źródła prądowego lub napięciowego, nieobciążonym wyjściu i rezystancjach ramion dobranych do czujników tak, aby osiągnąć jak najkorzystniejszy przebieg charakterystyki i uproszczone równanie pomiaru. Do opisu układu wystarcza wówczas transmitancja prądowo-napięciowa lub napięciowa. Przy wyznaczaniu błędów i niepewności pomiarowych, aby nie otrzymać błędnych zależności należy jednak stosować pełne wzory parametrów zewnętrznych mostków, gdyż nawet dla jednakowych wartości znamionowych parametrów rezystorów ich miary są zwykle różne i od siebie niezależne.

Transmitancja prądowo- napięciowa r₂₁ mostka 4R

W PAK nr 9bis/2006 [8] podano wzory dla rozwarciowej transmitancji prądowo-napięciowej (rezystancji skrośnej) i transmitancji napięciowej (współczynnika przetwarzania napięcia) oraz dla ich miar dokładności (błędy bieżące i graniczne oraz niepewności pomiarowe) w przypadku ogólnym mostka 4R z rys 1, tj. przy dowolnych wartościach początkowych R_{i0} i przyrostach względnych ε_i rezystancji ramion $R_i = R_{i0}(1+\varepsilon_i)^1$. Rozpatrzymy tu przypadki szczególne.

Rozwarciowa transmitancja prądowo-napięciowa r_{21} układu mostkowego z rys. 1 wynosi

$$r_{21} = \frac{R_1 R_3 - R_2 R_4}{\sum R_i} \equiv r_{210} + r_{21\varepsilon}(\varepsilon_i)$$
(1)

gdzie: transmitancja początkowa

 $r_{210} = \frac{R_{10}R_{30} - R_{20}R_{40}}{\sum R_{i0}}$ (1a)

¹ Dla jednolitości z [8] są tu te same oznaczenia

Dodatnie przyrosty ε_i rezystancji mostka mogą być większe od 1 i są ograniczone tylko maksymalnym dopuszczalnym napięciem zasilającego źródła prądu. Dalej szczegółowo będą tylko rozpatrywane miary dokładności transmitancji r_{21} mostka stosowanego w pomiarach, tj. zrównoważonego w stanie początkowym, czyli o nominalnej wartości $r_{210}=0$. Wówczas $r_{21}=r_{21\varepsilon}$. Przyjmie się też, że:

$$r_{21} \equiv t_0 f(\varepsilon_i) \tag{2}$$

gdzie: $t_0 = \frac{R_{10}R_{30}}{\sum R_{i0}}$ - czułość początkowa, $f(\varepsilon_i) \equiv \frac{\Delta L(\varepsilon_i)}{1 + \varepsilon_{\Sigma R}}$ - funk-

cja niezrównoważenia, $\varepsilon_{\Sigma R}(\varepsilon_i) = \frac{\sum \varepsilon_i R_{i0}}{\sum R_{i0}}$ - względny przyrost

 ΣR_i od ΣR_{i0} .

Szczegółowe postacie tych parametrów podano w tabeli 1.

3. Miary transmitancji prądowo- napięciowej r₂₁

3.1. Wzory podstawowe

Podobnie jak dla czujników można dla każdej zmiennej rezystancji $R_i=R_{i0}(1+\varepsilon_i)$ wyodrębnić błąd względny δ_{i0} jej wartości początkowej i błąd bezwzględny Δ_{ii} jej przyrostu. Błędy względne określa się względem jej wartości bieżącej R_i lub początkowej R_{i0} .

$$\delta_{Ri} \equiv \frac{\Delta_i}{R_i} = \delta_{i0} + \frac{1}{1 + \varepsilon_i} \Delta_{\varepsilon i}$$
(3a)

$$\delta_i = \frac{\Delta_i}{R_{i0}} = (1 + \varepsilon_i)\delta_{i0} + \Delta_{\varepsilon_i}$$
(3b)

Przy zmianach rezystancji w dużym zakresie różnią się one znacznie, ale powiązane są ze sobą jednoznacznie. Gdy rezystancja R_i jest stała, to jej przyrost $\varepsilon_i=0$ i we wzorach występuje tylko jedna wartość jej miary, np. δ_{i0} dla błędu bieżącego. Dla rezystancji mostka zwykle nie przekracza ona miar rezystancji początkowych czujników. Jeśli występują tylko błędy początkowe $\delta_{i0}\neq 0$, zaś błędy przyrostów $\Delta_{ei}\rightarrow 0$ to wówczas: $\delta_{Ri} = \delta_{i0}$ lub $\delta_i = (1+\varepsilon_i)\delta_{i0}$.

Bieżący błąd bezwzględny Δ_{r21} transmitancji rozwarciowej r_{21} wynika bezpośrednio z różniczkowania wzoru (1):

$$\Delta_{r_{21}} = \frac{R_1 R_3 (\delta_{R1} + \delta_{R3}) - R_2 R_4 (\delta_{R2} + \delta_{R4}) - r_{21} \Sigma (R_i \delta_{Ri})}{\Sigma R_i}$$
(4)

Po uwzględnieniu (3a) lub (3b) dla r_{21} według (2) otrzymuje się kilka równoważnych postaci tego błędu w wartościach względnych, tj. odniesionego do czułości początkowej t_0 :

$$\delta_{r21} \equiv \frac{\Delta_{r21}}{t_0} = \sum_{i=1}^{4} \dot{\nu}_{iR} \delta_{Ri} = \sum_{i=1}^{4} \dot{\nu}_{iR} \delta_{iR} = \frac{1}{1 + \varepsilon_{\Sigma R}} \left\{ \begin{pmatrix} 1 + \varepsilon_3 - \frac{\eta_2}{R_{30}} \end{pmatrix} (1 + \varepsilon_1) \delta_{10} + \mathcal{L}_1 \end{bmatrix} - \left(1 + \varepsilon_4 + \frac{\eta_2}{R_{40}} \right) (1 + \varepsilon_2) \delta_{20} + \mathcal{L}_2 \end{bmatrix} + \left\{ 1 + \varepsilon_1 - \frac{\eta_2}{R_{10}} \right) (1 + \varepsilon_3) \delta_{30} + \mathcal{L}_2 \end{bmatrix} - \left(1 + \varepsilon_2 + \frac{\eta_2}{R_{20}} \right) (1 + \varepsilon_4) \delta_{40} + \mathcal{L}_3 \end{bmatrix} \right\}$$

$$(5)$$

Występuje tu łącznie addytywny błąd transmitancji początkowej Δ_{r210} i błąd multiplikatywny transmitancji r_{21} . Na podstawie (5) wyznacza się **błąd graniczny i miarę losową transmitancji** r_{21} , np. w postaciach ogólnych

$$\left|\delta_{r21}\right| = \sum_{i=1}^{4} \left| w_{Ri}^{'} \right| \left| \delta_{Ri} \right| = \sum_{i=1}^{4} \left| w_{i}^{'} \right| \left| \delta_{i} \right|$$
(6)

$$\overline{\delta}_{r21} = \sqrt{\sum_{i=1}^{4} w_{Ri}^{'2} \delta_{Ri}^{2}} = \sqrt{\sum_{i=1}^{4} w_{i}^{'2} \delta_{i}^{2}}$$
(7)

Podobne wzory otrzymuje się dla transmitancji napięciowej k_{21} – patrz kolumna b) tabeli 1.

- Wzory miar transmitancji mostka upraszczają się dla:
- początkowej jego równowagi, tj. przy $R_{20}=mR_{10}$, $R_{40}=nR_{10}$, $R_{30}=mnR_{10}$,
- relacji pomiędzy początkowymi wartościami rezystancji ramion, np. symetria w jednej przekątnej m=1 ($R_{10}=R_{20}, R_{40}=R_{30}$) lub n=1 ($R_{10}=R_{40}, R_{20}=R_{30}$), w ich obu: m=n=1 oraz antysymetria, tj.: n=m ($R_{40}=R_{20}, R_{30}=m^2R_{10}$) lub $n=m^{-1}$ ($R_{40}=R_{20}/m, R_{30}=R_{10}$),
- sprzężenia przyrostów ε_i przez wielkości oddziałujące,
- · występowania tylko dwu lub jednego z tych przyrostów,
- pomijalnych wpływów wartości miar rezystancji początkowych lub miar przyrostów rezystancji mostka oraz przy powiązaniu tych miar w każdym i z różnych ramion.

Możliwych kombinacji jest bardzo dużo. Dla przykładu wyznaczy się miary czteroramiennego rezystancyjnego mostka (4R) o zasilaniu prądowym dla kilku najczęstszych w praktyce jego przypadków szczególnych, tj. dla różnych stosunków *m* i *n* rezystancji początkowych i ich sprzężonych przyrostów $\pm \varepsilon$ oraz dla jednakowych rezystancji początkowych i różnych wariantów tych przyrostów.

3.2. Miary transmitancji początkowej r₂₁₀

Dla $r_{210}=0$ błąd początkowy Δ_{r21} jest błędem bezwzględnym zera mostka i wynosi:

$$\Delta_{r210} = t_0 \sum (-1)^{i+1} \delta_{i0} = t_0 \,\delta_{210} \tag{8}$$

gdzie: $\delta_{2D} = \delta_{10} + \delta_{30} - \delta_{20} - \delta_{40}$ - względny błąd początkowy r_{210} .

Może on równać się zeru przy różnych kombinacjach wartości błędów δ_{i0} , np., gdy są one jednakowe dla par ramion sąsiednich lub przeciwne dla par ramion przeciwległych.

Z (5) wynika graniczny błąd początkowy transmitancji

$$\left|\Delta_{r210}\right|_{m} = t_0 \sum \left|\delta_{i0}\right| = t_0 \left|\delta_{210}\right| \tag{9}$$

oraz początkowa losowa miara dokładności

$$\overline{\Delta}_{210} = t_0 \sqrt{\sum \overline{\delta}_{i0}^2} = t_0 \overline{\delta}_{210} \tag{10}$$

4. Błąd transmitancji r_{21} przy sprzężonych czterech przyrostach rezystancji ramion $\pm \varepsilon$

 $R_1 C R_2$ $R_2 D R_3$ $R_4 D R_3$ $R_5 R_5$ $R_5 R_5$ $R_5 R_5$

 $\Delta_{r21} = \frac{t_0}{1 + \varepsilon_{\Sigma R}} \Big[(1 + \varepsilon) (\delta_1 + \delta_3) - (1 - \varepsilon) (\delta_2 + \delta_4) - 4\varepsilon \delta_{R\Sigma} \Big]$ (11a)

lub

$$\Delta_{r21} = \frac{t_0}{1 + \varepsilon_{\Sigma R}} \left[(1 + \varepsilon)^2 (\delta_{R1} + \delta_{R3}) - (1 - \varepsilon)^2 (\delta_{R2} + \delta_{R4}) - 4 \omega_{R\Sigma} \right]$$
(11b)

gdzie:

$$\varepsilon_{\Sigma R} = \varepsilon \frac{(1-m)(1-n)}{(1+m)(1+n)} \equiv \varepsilon a$$

 $\delta_{R\Sigma} = \frac{\sum \varDelta_i}{\sum R_i} = \frac{\delta_1 + mn\delta_3 + m\delta_2 + n\delta_4}{\left(1 + \varepsilon_{\Sigma R}\right)\left(1 + m\right)\left(1 + n\right)} = \frac{\left(1 + \varepsilon\right)\left(\delta_{R1} + mn\delta_{R3}\right) + \left(1 - \varepsilon\right)\left(m\delta_{R2} + n\delta_{R4}\right)}{\left(1 + \varepsilon_{\Sigma R}\right)\left(1 + m\right)\left(1 + n\right)}$

4.1. Symetria rezystancji początkowych w jednej osi mostka o przyrostach $\pm \varepsilon$

Dla mostka o m=1 lub n=1 otrzymuje się $\varepsilon_{\Sigma R}=0$ i wzory stają się jeszcze prostsze. Np. przy m=1

$$\Delta_{r21} = \frac{nR_{10}}{2(1+n)} \left[(1+\varepsilon)(\delta_1+\delta_3) - (1-\varepsilon)(\delta_2+\delta_4) - \frac{2\varepsilon(\delta_1+n\delta_3+\delta_2+n\delta_4)}{(1+n)} \right] (12)$$

4.2. Jednakowe rezystancje początkowe i przyrosty ±ε

Gdy *m*=*n*=1 błąd względny δ_{r21} w funkcji δ_i ma postać:

$$\delta_{r21} = \delta_1 + \delta_3 - (\delta_2 + \delta_4) \tag{13a}$$

oraz dla błędów składowych rezystancji R_i

$$\delta_{r21} = (1+\varepsilon)(\delta_{01}+\delta_{03}) - (1-\varepsilon)(\delta_{02}+\delta_{04}) + \varepsilon \sum \delta_{\varepsilon i}$$
(13b)

Po przekształceniu (13b)

$$\delta_{r21} = \delta_{10} + \delta_{30} - (\delta_{20} + \delta_{40}) + \varepsilon \sum (\delta_{i0} + \delta_{\varepsilon i})$$
(13c)

gdzie: $\delta_{210} = \delta_{10} + \delta_{30} - (\delta_{20} + \delta_{40})$ - błąd zera r_{21} .

Z (13a-c) wynikają **wnioski** dotyczące błędu transmitancji δ_{r21} niezrównoważonego mostka o jednakowych początkowych rezystancjach ramion i 4 sprzężonych przyrostach $\pm \varepsilon$.

- Wpływ błędów rezystancji R_i na błąd transmitancji może się skompensować całkowicie i to przy różnych kombinacjach ich wartości.
- Dla stałych błędów δ_i błąd wypadkowy δ_{r21} nie zależy od wartości przyrostów ε .
- Przy równym zeru błędzie początkowym δ_{210} wpływ wartości błędów początkowych δ_{i0} rezystancji R_i zanika, gdy równocześnie δ_{R1} =- δ_{R3} oraz δ_{R2} =- δ_{R4} .
- Błędy przyrostów rezystancji $\delta_{\epsilon i}$ o stałych wartościach wpływają proporcjonalnie do przyrostu ϵ .

5. Błąd graniczny transmitancji *r*₂₁ przy jednakowych błędach granicznych ramion

5.1. Dowolne przyrosty rezystancji ramion

Równość błędów granicznych $|\delta_{Ri}|=|\delta_R|$ wszystkich rezystancji wewnętrznych R_i mostka przy niejednakowych przyrostach ε_i jest możliwa tylko, gdy błędy przyrostów $|\Delta_{ci}| \rightarrow 0$. Wówczas $|\delta_{Ri}|=|\delta_{i0}|$. Jeśli błędy te są jednakowe dla wszystkich rezystancji, tj. $|\delta_{i0}|=|\delta_0|$, to

$$\left| \Delta_{r21} \right|_{m} = \left(\sum |w_{R_i}| \right) |\delta_0| \tag{14}$$

oraz z (1) i (3a) w funkcji R_i otrzymuje się:

$$\left|\Delta_{r21}\right|_{m} = \frac{\left|2(R_{1}R_{3} + R_{2}R_{4}) + r_{21}(R_{2} + R_{4} - R_{1} - R_{3})\right|}{\Sigma R_{i}} \left|\delta_{0}\right|$$
(15)

lub po uwzględnieniu postaci r₂₁:

$$\left| \Delta_{r21} \right|_{m} = \frac{1}{\sum R_{i}} \left| \left(3 - 2\frac{R_{1} + R_{3}}{\sum R_{i}} \right) R_{1} R_{3} + \left(3 - 2\frac{R_{2} + R_{4}}{\sum R_{i}} \right) R_{2} R_{4} \right| \left| \delta_{0} \right|$$
(16)

Z (14) błąd graniczny zera mostka wynosi:

$$|\Delta_{r21}|_{m0} = 4|t_0||\delta_0| \tag{17}$$

Natomiast przy jednakowych błędach $|\delta_{i0}|=|\delta_0|$ wartości początkowej i błędach przyrostów $|\Delta_{ii}|=|\Delta_{\varepsilon}|$ każdej z rezystancji i niezbyt dużych przyrostach ε_i , tj. gdy $\varepsilon_i\varepsilon_j\leq 0,2$, z dokładnością wystarczającą przy liczeniu błędów otrzymuje się przybliżenie:

$$\Delta_{r21}\Big|_{m} \approx 4t_{0} \left[\frac{\left|1 + \sum \varepsilon_{i}\right|}{\left(1 + \varepsilon_{\Sigma R}\right)^{2}} \left|\delta_{0}\right| + \left|\Delta_{\varepsilon}\right| \right]$$
(18)

5.2. Sprzężone przyrosty rezystancji ramion

Rozpatrzymy błąd graniczny transmitancji r_{21} mostka o przyrostach $\pm \varepsilon$ sąsiednich rezystancji czterech jego ramion, tj., gdy $\varepsilon_i = (-1)^{i+1} \varepsilon$ dla $|\varepsilon_i| \equiv \le 1$. Przy jednakowych błędach granicznych R_i , tj. $|\delta_{i0}| = |\delta_0|$ i $|\Delta_{ci}| = |\Delta_{ci}|$ ze wzorów (4), (5) lub z tabeli 1:

$$\left|\Delta_{r21}\right|_{m} = 4\left|t_{0}\right|\left|\frac{\left|1+a\varepsilon^{3}\right|}{\left(1+a\varepsilon\right)^{2}}\left|\delta_{0}\right| + \frac{\left|\Delta_{\varepsilon}\right|}{\left(1+a\varepsilon\right)^{2}}\right| = 4\left|t_{0}\right|\left[b\left|\delta_{0}\right| + \frac{\left|\Delta_{\varepsilon}\right|}{\left(1+a\varepsilon\right)^{2}}\right]$$
(19)

gdzie: $a = \frac{(1-m)(1-n)}{(1+m)(1+n)}$, $a \in (-1,+1)$, $\varepsilon_{\Sigma R} = \varepsilon a$, $b = \frac{|1+a\varepsilon^3|}{(1+a\varepsilon)^2}$.

Współczynnik *a* w funkcji *m* i *n* przedstawiono na rys. 2a. Tę samą wartość *a* uzyskuje się dla wielu par *m* i *n* powiązanych hiperbolami. Znak *a* jest dodatni, gdy m>1 i n>1 lub m<1 i n<1. Dla m=1 lub n=1, a=0.

Rys. 2a. Zależność współczynnika a ze wzoru (19) od stosunków rezystancji początkowych m i n mostka 4R

Fig. 2a. Coefficient a of equation (19) as function of arm initial resistance ratios m and n of the 4R bridge

Względny błąd graniczny $|\delta_{r21}|_m$ przy $|\Delta_{\varepsilon i}| \rightarrow 0$ zależy od współczynnika $(1 + a \varepsilon^3)/(1 + a \varepsilon)^2$ błędu początkowego $|\delta_0|$. Jego przebiegi podano na rys 2b. Dla *a*<0 błąd ten wzrasta wraz z przyrostem ε . Współczynnik przy $|\Delta_{\varepsilon i}|$ jest dodatni i maleje wraz z *a* i ε .

Podobne krzywe jak na rys. 2a, b można wyznaczyć dla współczynników błędu granicznego oraz miary losowej innych przypadków szczególnych mostka, w tym przy zasilaniu napięciowym - kolumna b) tabeli 1 lub dla mostków omawianych poniżej.

Rys. 2b. Zależność współczynnika *b* ze wzoru (19) dla błędu granicznego transmitancji r_{21} mostka 4R o przyrostach ±*e*, błędach początkowych $\left|\delta_{l0}\right| = \left|\delta_{0}\right|$ i błędach przyrostów $\left|\Delta_{e}\right| = 0$ (na osi x: *e* w skali x0,1)

Fig. 2b. Coefficient *b* of equation (19) of limited error of 4R bridge transmittance r_{21} for increments $\pm \varepsilon$, limited errors $|\delta_{0}|=|\delta_{0}|$ and $|\Delta_{\varepsilon}|=0$ (on axis x: ε is multiplied by 0,1)

Przy liczeniu błędów w przedziałach: $a\varepsilon \le 0,4$ i $\varepsilon \le 0,4$, zależnie od wymaganej dokładności można stosować następujące przybliżenia:

$$\left|\Delta_{r21}\right|_{m} \approx 4|t_{0}\left[\left[1-2a\varepsilon+3a^{2}\varepsilon^{2}\right]|\delta_{0}|+\left|1-2a\varepsilon\right||\Delta_{\varepsilon}|\right] \approx 4|t_{0}||1-2a\varepsilon||\delta_{0}|+|\Delta_{\varepsilon}|\right)$$
(20)

Dla mostka o $\pm \varepsilon$ i jednej osi symetrii początkowej, tj. gdy m=1 lub n=1, a=0, $\varepsilon_{2R}=0$ jest:

$$\left| \Delta_{r21} \right|_m = 4t_0 \left(\left| \delta_0 \right| + \left| \Delta_{\varepsilon} \right| \right) \tag{21}$$

gdzie: $t_0 = R_{10} \frac{n}{2(1+n)}$ lub $t_0 = R_{10} \frac{m}{2(1+m)}$.

Bezwzględny błąd graniczny transmitancji wzrasta liniowo wraz z $4t_0$.

Przy dwu osiach symetrii mostka w równowadze (m=1=n), tj. dla jednakowych rezystancji początkowych $R_{i0}=R_{10}$ i przyrostów $\varepsilon_i=\pm\varepsilon$, wzór staje się bardzo prosty:

$$\left|\Delta_{r21}\right|_{m} = R_{10}\left(\left|\delta_{0}\right| + \left|\Delta_{\varepsilon}\right|\right) \tag{22}$$

Dla równowagi, gdy $\Delta_{\varepsilon}=0$, otrzymuje się

$$\left|\Delta_{r21}\right|_{m0} = R_{10} \left|\delta_{0}\right| \tag{22a}$$

Względne miary losowe transmitancji r_{21} i k_{21} dla kilku przypadków mostka 4R jako czwórnika o czterech ramionach zmiennych podano w [8] i w tabelach 1 i 2. Dla przyrostów ± ε i jednakowych miar losowych $\overline{\delta}_{i0}, \overline{\delta}_{ai}$ rezystancji R_i można też wyznaczyć ich współczynniki i przebiegi w funkcji ε o podobnej postaci, jak na rys. 2a, b.

6. Przeciwne przyrosty $\pm \varepsilon$ sąsiednich rezystancji R_1, R_2

Jeśli któraś z rezystancji R_i mostka nie zmienia się, to we wzorach opisujących miary jego parametrów roboczych $\epsilon = 0$ i występuje jedynie miara jej wartości początkowej. Dla zmiennych

tylko dwu rezystancji, np. R_1 , R_2 oraz sprzężonych i przeciwnych ich przyrostów $\varepsilon_1 = -\varepsilon_2 \equiv \varepsilon$, przy $\varepsilon_3 = \varepsilon_4 = 0$, z (5) wynika

$$\mathcal{A}_{21} = \frac{t_0}{1 + \varepsilon_{\Sigma R}} \left[(1 + \varepsilon)^2 \delta_{10} + (1 + \varepsilon) \mathcal{A}_{21} - (1 - \varepsilon)^2 \delta_{20} - (1 - \varepsilon) \mathcal{A}_{22} + \delta_{30} - \delta_{40} - 2\varepsilon \delta_{R\Sigma} \right]$$
(23)

gdzie: $\varepsilon_{\Sigma R} = \varepsilon \frac{1-m}{(1+m)(1+n)}, \ \delta_{R\Sigma} = \frac{\delta_1 + mn\delta_{30} + m\delta_2 + n\delta_{40}}{(1+m)(1+n)(1+\varepsilon_{\Sigma R})}$

Dla *m*=*n*=1, tj. przy jednakowych wszystkich początkowych rezystancjach $\varepsilon_{\Sigma R}=0$, $\delta_{R\Sigma}=\frac{1}{4}\sum \delta_i$:

$$\Delta_{r21} = \frac{R_{10}}{4} \left\{ (1 - 0.5\varepsilon) [(1 + \varepsilon)\delta_{10} + \Delta_{\varepsilon 1} - \delta_{40}] - (1 - 0.5\varepsilon) [(1 - \varepsilon)\delta_{20} + \Delta_{\varepsilon 2} - \delta_{30}] \right\}$$
(24)

Wniosek. W mostku 4R o zmiennych tylko dwu ramionach R_1 , R_2 , ich przyrostach ± ε i jednakowych początkowych rezystancjach kompensowanie się błędu transmitancji rozwarciowej r_{21} zależy od ε .

Błędu granicznego i miary losowej nie należy wyznaczać z (23), gdyż błąd $\delta_{R\Sigma}$ nie jest niezależny. Uzyska się je jako szczególne przypadki ogólnych wzorów (6 i (7). Natomiast dla *m*=1, *n*=1 można posłużyć się zależnością (24).

Przy $|\delta_{10}| = |\delta_{20}|$, $|\delta_{30}| = |\delta_{40}|$, $|\Delta_{\varepsilon 1}| = |\Delta_{\varepsilon 2}| = |\Delta_{\varepsilon}|$ oraz $\varepsilon_1 = \varepsilon = -\varepsilon_2$ otrzymuje się błąd graniczny:

$$\left| \Delta_{r21} \right|_{m} = \frac{R_{10}}{2} \left[\left(1 - 0.5 \varepsilon^{2} \right) \delta_{10} \right| + \left| \Delta_{\varepsilon} \right| + \left| \delta_{30} \right| \right]$$
(25)

oraz miarę losową

$$\overline{\Delta}_{r21} = \frac{\sqrt{2R_{10}}}{4} \sqrt{\left(1 - \varepsilon^2\right)^2 \overline{\delta}_{10}^2 + \overline{\delta}_{30}^2 + \left(1 + \varepsilon^2\right) \overline{\Delta}_{\varepsilon}^2}$$
(26)

Miary mostka o zmiennych rezystancjach R_1, R_2 podano też w tabeli 8.2 monografii [1] i w [6].

7. Jednakowe przyrosty ε dwu przeciwległych rezystancji R_1, R_3

$$A \begin{bmatrix} R_1 & C & R_{20} \\ \hline & & & \\ R_{40} & D & R_3 \end{bmatrix} B$$

Gdy w mostku 4R m=1 i przyrosty względne <u>B</u> przeciwległych rezystancji są parami jednakowe, to transmitancja r_{21} i przyrost $\varepsilon_{\Sigma R}$ zależą od nich liniowo [1-3], tj.:

$$\varepsilon_{21} = R_{10} \frac{n}{1+n} (\varepsilon_1 - \varepsilon_2)$$
 i $\varepsilon_{\Sigma R} = \frac{\varepsilon_1 + \varepsilon_2}{2}$

Dla dwu tylko przyrostów $\varepsilon_1 = \varepsilon_3 = \varepsilon$, przy $\varepsilon_2 = \varepsilon_4 = 0$

$$\mathcal{L}_{21} = \frac{t_0}{1+0.5\varepsilon} \left\{ \left(1 + \frac{n\varepsilon}{1+n}\right) \left[(1+\varepsilon)\delta_{10} + \mathcal{L}_{\varepsilon 1} - \delta_{40} \right] + \left(1 + \frac{\varepsilon}{1+n}\right) \left[(1+\varepsilon)\delta_{30} + \mathcal{L}_{\varepsilon 3} - \delta_{20} \right] \right\}$$
(27)

Jeśli również i n=1 (np. dwa jednakowe czujniki) to (27) upraszcza się

$$\mathcal{A}_{\varepsilon_{21}} = \frac{1}{4} R_0 \Big[(1 + \varepsilon) (\delta_{10} + \delta_{30}) + \mathcal{A}_{\varepsilon_3} + \mathcal{A}_{\varepsilon_1} - \delta_{20} - \delta_{40} \Big]$$
(28)

lub dla błędu względnego

$$\delta_{r21} = \delta_{210} + \varepsilon \left(\delta_{10} + \delta_{30} + \delta_{\varepsilon 3} + \delta_{\varepsilon 1} \right) \tag{28a}$$

Nawet, gdy błąd początkowy mostka $\delta_{210}=0$, to błędy początkowe rezystancji R_1 , R_3 nie wpływają przy $\varepsilon \neq 0$ tylko wówczas, gdy $\delta_{10}=-\delta_{30}$. Z (28) lub (28a) łatwo jest otrzymać graniczne błędy i miary losowe dla obu przypadków mostka. Np. przy jednakowych parami miarach ramion zmiennych i stałych z (28) wynika

$$\left|\mathcal{A}_{c21}\right|_{m} = \frac{1}{2}R_{0}\left[\left(1+\varepsilon\right)\left|\delta_{10}\right| + \left|\mathcal{A}_{\varepsilon1}\right| + \left|\delta_{20}\right|\right]$$
(29)

oraz

$$\overline{\Delta}_{r21} = \frac{\sqrt{2}}{4} R_0 \sqrt{(1+\varepsilon)} \overline{\delta}_{10}^2 + \frac{-2}{4\varepsilon_1} + \overline{\delta}_{20}^2$$
(30)

8. Zmienna jedna rezystancja mostka R₁

$$A[\begin{array}{c} R_1 C R_{20} \\ \hline \\ R_{40} D \end{array}] B$$

Przy zmiennej rezystancji tylko jednego ramienia mostka, np. R_1 , z (5), po wstawieniu $\epsilon_2=0$, $\epsilon_3=0$, $\epsilon_4=0$, otrzymuje się błąd bezwzględny transmitancji r_{21} w postaci:

$$4_{21} = t_0 \frac{(1+\epsilon_1)(\delta_{R1} + \delta_{30}) - (\delta_{20} + \delta_{40})}{1 + \epsilon_{\Sigma R}} - r_2 \delta_{ZR}$$
(31)

gdzie:
$$\delta_{\mathcal{LR}} = \frac{\delta_{10} + \frac{\varepsilon_1}{1 + \varepsilon_1} \delta_{\varepsilon_1} + m\delta_{20} + mn\delta_{30} + n\delta_{40}}{(1 + m)(1 + n)}$$
 lub po przekształ-

ceniach

$$4_{21} = \frac{t_0}{1 + \varepsilon_{\Sigma R}} \left[\delta_{210} + \varepsilon_0 \left(\frac{\delta_{\mathcal{E}1}}{1 + \varepsilon_{\Sigma R}} + \delta_{10} + \delta_{30} - \delta_{\Sigma 0} \right) \right]$$
(31a)

gdzie: $\delta_{210} = \delta_{10} + \delta_{30} - (\delta_{20} + \delta_{40})$ - względny błąd początkowy transmi-

tancji
$$r_{21}=0$$
, $\delta_{\Sigma R 0} = \frac{\sum R_{i0}\delta_{i0}}{\sum R_{i0}} = \frac{\delta_{10} + m\delta_{20} + mn\delta_{30} + n\delta_{40}}{(1+m)(1+n)}$ - błąd

początkowy, ΣR_{i0} , $\mathcal{E}_{\mathcal{R}} = \frac{\mathcal{E}_{i}}{(1+n)(1+n)}$ - przyrost względny ΣR_{i0}

Wzór (31) ujmuje wpływy błędów wszystkich rezystancji stałych oraz błędu δ_{i0} wartości początkowej R_{i0} i błędu $\delta_{\varepsilon 1}$ przyrostu ε_1 rezystancji ramienia zmiennego. Wynika z niego, że błędy $\delta_{i0}\neq 0$ wpływają na Δ_{r21} nawet przy $\delta_{210}=0$.

Przy jednakowych wartościach R_{i0} (*m*=1, *n*=1) z (5):

$$4_{21} = \frac{R_0}{4(1+0.2\mathfrak{T}_1)^2} \left[(1+\epsilon_1)\delta_{10} + (1+\frac{1}{2}\epsilon_1)^2 \delta_{30} - (1+\frac{1}{2}\epsilon_1)(\delta_{20} + \delta_{40}) + \mathcal{A}_{11} \right]$$
(32)

Błąd względny $\delta_{r_{21}}$ z wydzielonym błędem początkowym δ_{210} wyniesie:

$$\delta_{r21} = \frac{1}{(1+0.25\epsilon_1)^2} \left\{ \delta_{210} + \epsilon_1 \left[\delta_{10} + \left(1 + \frac{1}{4} \epsilon_1 \right) \delta_{30} - \frac{1}{2} \left(\delta_{20} + \delta_{40} \right) \right] + \mathcal{A}_{\epsilon 1} \right\}$$
(33)

Wzory (31) –(33) ujmują łącznie błędy rezystancji ramienia zmiennego i ramion stałych, ale są dosyć rozbudowane. Gdy wszystkie błędy δ_{70} =0, to w (31) δ_{2R0} =0 i zależność (33) staje się prostsza, taka, jak wynikająca bezpośrednio z różniczkowania trans-

mitancji:
$$r_{21} = t_0 \frac{\varepsilon_1}{1 + \varepsilon_{\Sigma R}}^2$$
, tj.:

$$4_{21} = \frac{t_0 \varepsilon_1}{\left(1 + \varepsilon_{\Sigma R}\right)^2} \delta_{\varepsilon 1} \tag{34}$$

Błędy $\delta_{R\Sigma0}$ i δ_{210} są od siebie zależne, błąd graniczny $|\Delta_{r21}|$ i miarę losową należy wyznaczać na podstawie wzorów z niezależnymi błędami δ_{i0} , $\Delta_{\varepsilon i}$, tj. (4),(5) lub przekształcając (32)

$$|4_{2}| = \frac{t_{0}}{1+\varepsilon_{\Sigma R}} \left[\left(\frac{\varepsilon_{1}}{(1+\varepsilon_{\Sigma R})\overline{J_{i0}}} \right) (1+\varepsilon_{1}) \delta_{1} \phi + |4_{2i}| \right] - \left(1+\frac{m\varepsilon_{1}}{(1+\varepsilon_{\Sigma R})\overline{J_{i0}}} \right) \delta_{2} \phi + \left(1+\varepsilon_{1}-\frac{m\varepsilon_{1}}{(1+\varepsilon_{\Sigma R})\overline{J_{i0}}} \right) \delta_{3} \phi - \left(1+\frac{m\varepsilon_{1}}{(1+\varepsilon_{\Sigma R})\overline{J_{i0}}} \right) \delta_{4} \phi \right]$$
(35)

gdzie: $\Sigma_{i0} = (1+m)(1+n)$

Przy jednakowych granicznych błędach początkowych wszystkich ramion $|\delta_{i0}| = |\delta_0|$ i początkowych wartościach rezystancji $R_{i0}=R_0$ (*m=n=*1):

$$\left| \Delta_{r21} \right|_{m} = \frac{R_{10}}{4} \frac{\left| \left(4 + 3\varepsilon_{1} + \frac{1}{4}\varepsilon_{1}^{2} \right) \delta_{0} \right| + \left| \Delta_{\varepsilon_{1}} \right| \right|}{\left(1 + 0.25\varepsilon_{1} \right)^{2}}$$
(36)

Miara losowa transmitancji r_{21} przy jednakowych rezystancjach $R_{i0} = R_0$ ramion:

$$\bar{4}_{21} = \frac{R_0}{4(1+0.25_0)^2} \sqrt{(1+\epsilon_1)^2 \tilde{\delta}_{10}^2 + (1+\frac{1}{2}\epsilon_1)^4 \tilde{\delta}_{30}^2 - (1+\frac{1}{2}\epsilon_1)^2 (\tilde{\delta}_{20}^2 + \tilde{\delta}_{40}^2) + \tilde{4}_{41}^2}$$
(37)

a dla jednakowych też i ich miar losowych $\delta_{i0} = \delta_0$

$$\bar{\Delta}_{r21} = \frac{R_0}{4(1+0.25\varepsilon_1)^2} \sqrt{\left[(1+\varepsilon_1)^2 + (1+\frac{1}{2}\varepsilon_1)^4 + 2(1+\frac{1}{2}\varepsilon_1)^2\right]} \bar{\delta}_0^2 + \bar{\Delta}_{\varepsilon 1}^2} \quad (38)$$

Wniosek. Wzory miar dokładności mostka o pojedynczym ramieniu zmiennym są bardziej skomplikowane niż mostków o przyrostach sprzężonych $\pm \varepsilon$. Dla małych przyrostów ε można je przybliżać prostszymi funkcjami, np. wielomianami liniowymi lub drugiego stopnia.

W tabeli 1 zestawiono wzory dla błędów granicznych oraz niepewności standardowych najczęściej stosowanych mostków 4R o różnej liczbie ramion zmiennych, różnych stosunkach *m* i *n* rezystancji początkowych i jednakowych co do modułu sprzężonych przyrostach $\pm \varepsilon$. Kolumna a) dotyczy transmitancji r_{21} stosowanej przy zasilaniu prądowym, a kolumna b) - transmitancji k_{21} dla zasilania napięciowego, której wzór podstawowy podano u góry tej kolumny.

Tabela 2 zawiera miary dokładności transmitancji mostków 4R o jednakowych rezystancjach początkowych.

Miary dokładności napięcia wyjściowego przy zasilaniu prądowym

Podane wzory miar transmitancji r_{21} umożliwiają wyznaczenie dokładności **wyjściowego napięcia rozwarcia** mostka 4R z rys. 1 zasilanego prądowo, tj., gdy rezystancja źródła $R_{G} >> R_{AB}$ i rezystancja obciążenia $R_{L} >> R_{CD}$. Mierzy się to napięcie przy stabilizowanym zasilaniu, lub jego stosunek do prądu wejściowego. Z (1) i (2) wynika

$$U'_{DC} = Jr_{21} = J \frac{R_1 R_3 - R_2 R_4}{\sum R_i} \equiv T'_0 f(\varepsilon_i)$$
(39)

gdzie: $I_{AB} = J$ - prąd zasilania mostka, $T_0 = Jt_0$ - czułość początkowa napięcia U'_{DC} względem funkcji $f(\varepsilon_i)$ dla $\varepsilon_i \rightarrow 0$.

Błąd bezwzględny rozwarciowego napięcia wyjściowego U'_{DC} odniesiony do prądu J i z uwzględnieniem wartości błędu Δ_J , lub jego niestabilności, wynosi

$$\frac{\Delta_{U'DC}}{J} = \Delta_{r21} + r_{21}\frac{\Delta_J}{J}$$
(40)

Odnosząc błąd Δ_{UDC} do określonej wartości napięcia wyjściowego, np. odpowiadającej zakresowi zmian transmitancji r_{21} , otrzymuje się następujący **błąd względny**:

$$\delta'_{Um} = \frac{\Delta_{U'DC}}{U'_{DC\,\text{max}} - U'_{DC\,\text{min}}} = \frac{\Delta_{r_{21}} + \delta_J r_{21}}{r_{21_{\text{max}}} - r_{21_{\text{min}}}}$$
(41)

gdzie:
$$\delta_J \equiv \frac{\Delta_J}{J}$$
 - bieżący błąd względny prądu J.

 $^{^2}$ Jest to funkcja homograficzna, czyli równo
osiowa hiperbola o asymptotach: $\varepsilon=$ -
 $(1+m)(1+n), r_{l2}=R_{10}\,m\,n$

N				Transmitancja rozwar	ciowa			
r		↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		a) prądowo-napięciowa r ₂₁	b) napięciowa k ₂₁			
1			r	$\frac{U_{DC}}{I_{AB}} = \frac{U_{DC}}{I_{AB}} = \frac{R_1 R_3 - R_2 R_4}{\sum R_i} \equiv t_0 f(\varepsilon_i)$ $gdzie:$ $t_0 \equiv \frac{m n R_{10}}{(1+m)(1+n)}$ $\Delta L(\varepsilon_i)$ $gdzie:$ $t_0 \equiv \frac{m n R_{10}}{(1+m)(1+n)}$	$k_{21} \equiv \frac{U_{DC}}{U_{AB}} = \frac{R_1 R_3 - R_2 R_4}{(R_1 + R_2)(R_3 + R_4)} \equiv k_0 f_E(\varepsilon_i)$			
2	$U_{DC} = r_{21}I_{AB} -$	$R_{CD}^{\omega}I_{DC}$	$f(\varepsilon_i)$	$=\frac{\varepsilon_1+n\varepsilon_2+n(\varepsilon_4+n\varepsilon_3)}{(1+n)(1+n)}$	$k_0 \equiv \frac{1}{(1+1)}$	$\frac{m}{(m)^2} f_E(\xi) \equiv \frac{\Delta Q(\xi)}{(1+\xi_1)(1+\xi_2)} \epsilon_{12} \equiv \frac{\varepsilon_1 + m\varepsilon_2}{1+m}, \epsilon_{43} \equiv \frac{\varepsilon_4 + m\varepsilon_3}{1+m}$		
3	$R_{\rm L}?$?, $U_{DC}?$ $U'_{DC}=r_{21}I_{AB}=i$	U'_{DC} $k_{21}U_{AB}$	<u>M</u> rezys	tarv dokładności tancji $R_i = R_{i0}(1+\varepsilon_i)$ błąd bieżący $\delta_{R_i} \equiv \frac{\Delta_{i}}{R_i} = \delta_{i_0} + \frac{\Delta_{e_i}}{1+\varepsilon_i}$ błąd graniczny	$\begin{vmatrix} \alpha_{Ri} \\ \beta_{Ri} \end{vmatrix} = \frac{ \Delta_i }{R_i} = \delta_{i0} + \frac{ \Delta_{ci} }{1 + \varepsilon_i} \begin{array}{c} \mathbf{miara} \\ \mathbf{losowa} \\ \end{array} \overline{\delta}_{Ri} \equiv \frac{\overline{\Delta}_i}{R_i} = \sqrt{\overline{\delta}_{i0}^2 + \frac{\overline{\Delta}_{ci}^2}{(1 + \varepsilon_i)^2}} \\ \end{array}$			
	Typ mostka	Miary	a)	$\delta_{_{r21}}, \left \delta_{_{r21}}\right , ar{\delta}_{_{r21}}$ dla transmitancji $r_{_{21}}$	b) $\delta_{k21}, \left \delta_{k21} \right , \overline{\delta}_{k21}$ dla transmitancji k_{21}			
	<u>Przypadek</u> <u>ogólny</u> Mostok 48		$\delta_{r^{21}} = \frac{1}{2}$	$\frac{1}{1+\varepsilon_{2R}} \left\{ (1+\varepsilon_3 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_1)\delta_{10} + \Delta_{\varepsilon_1} \right] - (1+\varepsilon_4 + \frac{r_{12}}{R_{40}}) \left[(1+\varepsilon_2)\delta_{20} + \Delta_{\varepsilon_2} \right] + \right\} + (1+\varepsilon_1 - \frac{r_{12}}{2}) \left[(1+\varepsilon_3)\delta_{30} + \Delta_{\varepsilon_3} \right] - (1+\varepsilon_2 + \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_4)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{2}) \left[(1+\varepsilon_3)\delta_{30} + \Delta_{\varepsilon_3} \right] - (1+\varepsilon_2 + \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_4)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_2)\delta_{30} + \Delta_{\varepsilon_3} \right] - (1+\varepsilon_2 + \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_3)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_3)\delta_{30} + \Delta_{\varepsilon_3} \right] - (1+\varepsilon_2 + \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_3)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_3)\delta_{30} + \Delta_{\varepsilon_3} \right] - (1+\varepsilon_2 + \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_3)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_3)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_3)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_3)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_3)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_3)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_3)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_3)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_3)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_3)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_2)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_2)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_2)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_2)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_2)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_2)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_2)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_2)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_2)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_2)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_2)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_2)\delta_{40} + \Delta_{\varepsilon_4} \right] + (1+\varepsilon_1 - \frac{r_{12}}{R_{30}}) \left[(1+\varepsilon_2)\delta_{40} + \Delta_{\varepsilon$	$\begin{split} \mathcal{S}_{k21} =& \frac{\left(1 + \mathcal{E}_{1}\right) \left(1 + \mathcal{E}_{2}\right)}{\left(1 + \mathcal{E}_{12}\right)^{2}} \Big(\mathcal{S}_{R1} - \mathcal{S}_{R2}\Big) + \frac{\left(1 + \mathcal{E}_{3}\right) \left(1 + \mathcal{E}_{4}\right)}{\left(1 + \mathcal{E}_{34}\right)^{2}} \Big(\mathcal{S}_{R3} - \mathcal{S}_{R4}\Big) \\ & \overline{\mathcal{S}_{k21} =} \frac{\Delta_{k21}}{k_{0}} = \sum_{i=1}^{4} \dot{w_{ki}} \mathcal{S}_{Ri}} \end{split}$			
4	$\frac{\text{MOSTER } 4K_i}{R_1 C R_2}$	Błąd bieżący		$\delta_{r21} = \frac{\Delta_{r21}}{t_0} = \sum_{i=1}^4 \dot{w_{Ri}} \delta_{Ri}$				
	$R_4 \stackrel{ }{D} R_3$ $R_1 = R_{10}(1+\varepsilon_1)$ $R_2 = mR_{10}(1+\varepsilon_2)$ $R = mR_1(1+\varepsilon_2)$		gdzie: $\dot{w}_{Ri} = (1)$	$(1+\varepsilon_{j})\dot{W}_{i} \qquad w_{i} = \frac{1}{1+\varepsilon_{\Sigma R}} \left[(-1)^{i-1} (1+\varepsilon_{j}) - \frac{r_{21}}{R_{j0}} \right] \qquad j = (i+2) \text{ mode 4 tj. gdy:}$ i = 1, 2, 3, 4 to j = 3, 4, 1, 2	gdzie:	<i>n</i> - dowolne; $\dot{w_{i1}} = -\dot{w_{i2}} = \frac{(1+c_1)(1+c_2)}{1+c_{12}}; \dot{w_{i3}} = -\dot{w_{i4}} = \frac{(1+c_3)(1+c_4)}{1+c_{34}}$		
5	$R_{4}=nR_{10}(1+\varepsilon_{4})$ Równowaga mostka $r_{21}=0$	Błąd graniczny		$\left \boldsymbol{\delta}_{r21}\right = \sum_{i=1}^{4} \left \boldsymbol{w}_{Ri} \right \left \boldsymbol{\delta}_{Ri} \right $		$\left \delta_{k21} \right = \sum_{i=1}^{4} \left \dot{w_{ki}} \right \left \delta_{Ri} \right $		
6	$R_{10}R_{30} = R_{20}R_{40}$	Śr. kw. losowa		$\overline{\delta'}_{r,21} = \sqrt{\sum_{i=1}^{4} w_{Ri}^{*2} \overline{\delta}_{Ri}^{*2}} \qquad $		$\overline{\delta}_{r21} = \sqrt{\sum_{i=1}^{4} w_{ki}^{2} \overline{\delta}_{Ri}^{2}} \qquad \text{współczynniki} \\ \text{korelacji } k_{ij} = 0$		
	Błędy gr	raniczne i	miary	losowe przy dowolnych stosunkach <i>m</i> i <i>n</i> sąsiednich rezysta	ncji o	raz przyrostach <u>ɛj=±ɛ</u>		
7	<u>Mostek 4R</u> <u>Sprzężone 4 ε_i</u>	$\begin{split} \left \boldsymbol{\delta}_{i0} \right = \left \boldsymbol{\delta}_{0} \right , \\ \left \boldsymbol{\Delta}_{\varepsilon i} \right = \left \boldsymbol{\Delta}_{\varepsilon} \right \end{split}$	$ \delta_{r21} $	$\leq 4 \frac{\left(1+a\varepsilon^{3}\right)\left \delta_{0}\right +\left \Delta_{\varepsilon}\right }{\left(1+a\varepsilon\right)^{2}} \approx 4\left(1-2a\varepsilon\right)\left(\left \delta_{0}\right +\left \Delta_{\varepsilon}\right \right) \qquad \begin{array}{c} \text{gdzie:} \\ a \equiv \underbrace{(1-m)(1-n)}{(1+m)(1+n)} \end{array}$	$ \delta_{k21} $	$\leq 4 \frac{1+b^2 \varepsilon^2}{\left(1-b^2 \varepsilon^2\right)^2} \left[\left(1-\varepsilon^2\right) \left \delta_0 \right + \left \Delta_\varepsilon \right \right] \qquad \begin{array}{c} \text{gdzie:} \\ n \text{ dowolne} \\ b \equiv \frac{1-m}{1+m} \end{array} \right]$		
8	<u>ε;=±ε</u> ΔL=4ε, ε _{ΣR} =aε	$ \begin{split} \overline{\delta}_{i0} &= \overline{\delta}_0, \\ \overline{\Delta}_{\varepsilon ii} &= \overline{\Delta}_{\varepsilon} \end{split} $	$\overline{\delta}_{r_{21}}$	$\sqrt{\overline{\delta}_0^2} \sum_{i=1}^4 w'_{Ri}^2 + \overline{\Delta}_{\varepsilon}^2 \sum_{i=1}^4 \frac{w'_i^2}{\left(1 + \varepsilon_i\right)^2}$	$\bar{\delta}_{k21}$	$2\left(1\!-\!\varepsilon^2\right)\!\frac{\sqrt{\left(\!1\!+\!b^2\varepsilon^2\right)^2\!+\!4b^2\varepsilon^2}}{\left(\!1\!-\!b^2\varepsilon^2\right)^2}\sqrt{\overline{\delta_0}^2\!+\!\frac{1\!+\!\varepsilon^2}{\left(\!1\!-\!\varepsilon^2\right)^2}\overline{\Delta}_\varepsilon^2}}$		
9	Sprzężone R_1, R_3 $\underbrace{\mathcal{E}_1 = \mathcal{E} = \mathcal{E}_3}_{R_1 \ C \ R_{20}}$	$\begin{vmatrix} \delta_{10} \end{vmatrix} = \begin{vmatrix} \delta_{30} \\ \delta_{20} \end{vmatrix} = \begin{vmatrix} \delta_{40} \\ \delta_{\epsilon 1} \end{vmatrix}$ $\begin{vmatrix} \Delta_{\epsilon 1} \end{vmatrix} = \begin{vmatrix} \Delta_{\epsilon 3} \\ \Delta_{\epsilon} \end{vmatrix}$	$ \delta_{r21} $	$2\frac{\left(1+\varepsilon+0.5d''\varepsilon^2\right)\left[\left(1+\varepsilon\right)\left \delta_{10}\right +\left \Delta_{\varepsilon}\right \right]+\left[1+\varepsilon+0.5\varepsilon^2\left(1-d'\right)\right]\left \delta_{20}\right }{\left(1+d''\varepsilon\right)^2}$	$ \delta_{k21} $	$\left[\left(\frac{1+m}{1+m+\varepsilon}\right)^{2} + \left(\frac{1+m}{1+m+m\varepsilon}\right)^{2}\right] \left[(1+\varepsilon)\left(\left \delta_{10}\right + \left \delta_{20}\right \right) + \left \Delta_{\varepsilon}\right \right]$		
10	$\begin{array}{c} \hline R_{40} & D & R_3 \\ \Delta L = 2\varepsilon + \varepsilon^2 & \varepsilon_{\Sigma R} = d^* \varepsilon \\ a^* = \frac{1 + m n}{(1 + m) (1 + n)} \end{array}$	$\overline{\delta}_{10} = \overline{\delta}_{30}$ $\overline{\delta}_{20} = \overline{\delta}_{40}$ $\overline{\Delta}_{61} = \overline{\Delta}_{63}$	$\bar{\delta}_{r21}$	$\frac{\sqrt{\left[\left(1+\varepsilon-\frac{r_{12}}{R_{30}}\right)^2+\left(1+\varepsilon-\frac{r_{12}}{R_{10}}\right)^2\right]\left[\left(1+\varepsilon\right)^2\vec{\delta}_{10}^2+\vec{\Delta}_{\varepsilon}^2\right]+\left[\left(1+\frac{r_{12}}{R_{40}}\right)^2+\left(1+\frac{r_{12}}{R_{20}}\right)^2\right]\vec{\delta}_{20}^2}{1+d^6\varepsilon}$	$\overline{\delta}_{k21}$	$\left[\left(\frac{1+m}{1+m+\varepsilon}\right)^2 + \left(\frac{1+m}{1+m+m\varepsilon}\right)^2\right]\sqrt{\left(1+\varepsilon\right)^2 \left(\frac{-2}{\delta_{10}} + \frac{-2}{\delta_{20}}\right) + \frac{-2}{\Delta_{\varepsilon}}}$		
11	$\frac{\text{Zmienne } R_1}{R_1 = R_{10}(1 + \varepsilon_1)}$ $R_1 \subset R_{20}$ $A = R_1 \cap R_{20}$	$\begin{split} \left \begin{array}{c} \delta_{10} \end{array} \right \neq \\ \left \begin{array}{c} \delta_{20} \end{array} \right = \left \begin{array}{c} \delta_{30} \end{array} \right \\ = \left \begin{array}{c} \delta_{40} \end{array} \right \end{split}$	$ \delta_{r21} $	$\frac{1}{\left(1+\varepsilon_{_{\Sigma R}}\right)^2}\left\{ \left(1+\varepsilon_1\right) \left \delta_{_{10}} \right + \left \Delta_{_{S1}} \right + \left[3+\varepsilon_1 + \left(3+m+n-mn+\varepsilon_1\right) \varepsilon_{_{\Sigma R}} \right] \left \delta_{_{20}} \right \right\}$	$ \delta_{k21} $	$\frac{\left(1+\varepsilon_1\right)\left(\left \delta_{10}\right +\left \delta_{20}\right \right)+\left \Delta_{z1}\right }{\left(1+\frac{1}{1+m}\varepsilon_1\right)^2}+\left \delta_{30}\right +\left \delta_{40}\right $		
12	$\mathcal{E}_{1} = t_{0} \frac{\mathcal{E}_{1}}{1 + \mathcal{E}_{22}} \qquad \mathcal{E}_{1,8} = \frac{\mathcal{E}_{1}}{\Sigma \tau_{11}}$ $\mathcal{D}_{r_{0}} = (1 + n) (1 + n)$	$ \overline{\delta}_{10} \neq \\ \overline{\delta}_{20} = \\ \overline{\delta}_{30} = \overline{\delta}_{40} $	$\bar{\delta}_{r_{21}}$	$\frac{\sqrt{(1+\varepsilon_{1})^{2}\bar{\delta}_{10}^{2}+\bar{\Delta}_{e^{1}}^{2}+\left\{\begin{array}{c} [1+(1+m)\varepsilon_{_{2R}}]^{2}+\\+[1+\varepsilon_{1}+(1-mn+\varepsilon_{1})\varepsilon_{_{2R}}]^{2}+[1+(1+n)\varepsilon_{_{2R}}]^{2}\right\}}\bar{\delta}_{_{20}}^{2}}{(1+\varepsilon_{_{2R}})^{2}}$	$\overline{\delta}_{k21}$	$\sqrt{\frac{\left(1+\varepsilon_{1}\right)^{2}\left(\overline{\delta}_{10}^{2}+\overline{\delta}_{20}^{2}\right)+\overline{\Delta}_{\varepsilon1}^{2}}{\left(1+\frac{1}{1+m}\varepsilon_{1}\right)^{4}}+2\overline{\delta}_{20}^{2}}$		
13	$\underline{Z\text{mienne}} \underbrace{R_1, R_2}_{\underline{\varepsilon_1 = \varepsilon = -\varepsilon_2}}_{R_1 \ C \ R_2}$	$\begin{split} \left \begin{array}{c} \delta_{10} \\ \delta_{30} \\ \end{array} \right = \left \begin{array}{c} \delta_{20} \\ \delta_{30} \\ \end{array} \right \\ \left \begin{array}{c} \delta_{30} \\ \delta_{\varepsilon i} \\ \end{array} \right = \left \begin{array}{c} \delta_{\varepsilon} \\ \end{array} \right \end{split}$	$ \delta_{r21} $	$\frac{2}{\left(1+a'\varepsilon\right)^2} \begin{bmatrix} \left(1+0.5 a'\varepsilon - \frac{\varepsilon^2}{1+n}\right) \left \delta_{10}\right + \left(1-0.5 a'\varepsilon\right) \left \Delta_{\varepsilon}\right \\ + \left(1+0.5 a'\varepsilon + +0.5 na'\varepsilon\right) \left \delta_{30}\right \end{bmatrix} \qquad \begin{array}{c} gdzie: \\ a' \equiv \frac{1-m}{(1+m)(1+n)} \end{bmatrix}$	$ \delta_{k21} $	$\frac{2}{\left(1+b'\varepsilon\right)^{2}}\left[\left(1-\varepsilon^{2}\right)\left \delta_{10}\right +\left \varepsilon\right \left \delta_{\varepsilon}\right \right]+2\left \delta_{30}\right \right] \underset{b'\equiv\frac{1-m}{1+m}}{\operatorname{gdzie:}}$		
14	$\Delta L = 2\varepsilon \varepsilon_{\Sigma R} = a'\varepsilon$	$\overline{\delta}_{10} = \overline{\delta}_{20}$ $\overline{\delta}_{30} = \overline{\delta}_{40}$ $\overline{\delta}_{\varepsilon 1} = \overline{\delta}_{\varepsilon 2}$	$\overline{\delta}_{r_{21}}$	$\sqrt{\left[\left(1-\frac{2c}{\sum t}\right)^{2}(1+c)^{2}+\left(1+\frac{2mc}{\sum t}\right)^{2}(1-c)^{2}\right]}\widetilde{\beta}_{n}^{2}+\left[\left(1-\frac{2c}{\sum t}\right)^{2}+\left(1+\frac{2mc}{\sum t}\right)^{2}\widetilde{\beta}_{n}^{2}+\left[\left(1+c,-\frac{2mc}{\sum t}\right)^{2}+\left(1+c,+\frac{2mc}{\sum t}\right)^{2}\right]\widetilde{\delta}_{n}^{2}}\right]}$	$\overline{\delta}_{k21}$	$\sqrt{2}\sqrt{\frac{\left(1-\varepsilon^{2}\right)^{2}\overline{\delta}_{10}^{2}+\left(1+\varepsilon^{2}\right)\overline{\delta}_{\varepsilon1}^{2}}{\left(1+b\varepsilon\right)^{4}}+\overline{\delta}_{30}^{2}}$		
15	$\underline{Zmienne}_{R_1, R_4}$ $\underline{\varepsilon_1 = \varepsilon = -\varepsilon_4}$ $R_1 C R_{20}$	$\begin{split} \left \delta_{10} \right &= \left \delta_{40} \right \\ \left \delta_{20} \right &= \left \delta_{30} \right \\ \left \Delta_{\varepsilon 1} \right &\equiv \left \Delta_{\varepsilon 2} \right \end{split}$	$ \delta_{r21} $	$2\frac{\left(1+0.5a'''\varepsilon-\frac{1}{1+m}\varepsilon^{-2}\right)\left \delta_{10}\right +\left(1-0.5a'''\varepsilon\right)\left \Delta_{c}\right +\left[1+0.5a'''\varepsilon(1+m)\right]\right \delta_{20}\right }{\left(1+a'''\varepsilon\right)^{2}}$ gdzie: $d''=\frac{1-n}{(1+m)(1+n)}$	$ \delta_{k21} $	$\frac{\frac{(1+\varepsilon)\left(\left \delta_{10}\right +\left \delta_{20}\right \right)+\left \Delta_{\varepsilon}\right }{\left(1+\frac{1}{1+m}\varepsilon\right)^{2}}+\frac{(1-\varepsilon)\left(\left \delta_{10}\right +\left \delta_{20}\right \right)+\left \Delta_{\varepsilon}\right }{\left(1-\frac{1}{1+m}\varepsilon\right)^{2}}$		
16	$AL=2\varepsilon; \varepsilon_{\Sigma R}=a'''\varepsilon$	$\overline{\delta}_{10} = \overline{\delta}_{40}$ $\overline{\delta}_{20} = \overline{\delta}_{30}$ $\overline{\delta}_{\varepsilon 1} = \overline{\delta}_{\varepsilon 4}$	$\bar{\delta}_{r21}$	$\sqrt{\left[\left(1-\frac{2c}{\sum l}\right)^{2}(1+c)^{2}+\left(1+\frac{2nc}{\sum l}\right)^{2}(1-c)^{2}\right]}\vec{\delta}_{11}^{2}+\left[\left(1-\frac{2c}{\sum l}\right)^{2}+\left(1+\frac{2nc}{\sum l}\right)^{2}\vec{\Delta}_{1}^{2}+\left[\left(1+c_{1}-\frac{2mc}{\sum l}\right)^{2}+\left(1+c_{2}+\frac{2mc}{\sum l}\right)^{2}\vec{\delta}_{21}^{2}+\left(1+c_{2}+\frac{2mc}{\sum l}\right)^{2}+\left(1+c_{2}+\frac{2mc}{\sum l}\right)^{2}+\left(1+c_{2}+\frac{2mc}{\sum l}\right)^{2}+\left(1+c_{2}+\frac{2mc}{\sum l}\right)^{2}+\left(1+c_{2}+\frac{2mc}{\sum l}\right)^{2}+\left(1+c_{2}+\frac{2mc}{\sum l}\right)^{2}+\left(1+c_{2}+\frac{2mc}{\sum l}\right)^{2}+\left(1+c_{2}+\frac{2mc}{\sum l}\right)^{2}+\left(1+c_{2}+$	$\overline{\delta}_{k21}$	$\sqrt{\frac{(1+\varepsilon)^2 \left(\overline{\delta}_{10}^2 + \overline{\delta}_{20}^2\right) + \overline{\Delta}_{\varepsilon}^2}{\left(1 + \frac{1}{1+m}\varepsilon\right)^4}} + \frac{(1-\varepsilon)^2 \left(\overline{\delta}_{10}^2 + \overline{\delta}_{20}^2\right) + \overline{\Delta}_{\varepsilon}^2}{\left(1 - \frac{1}{1+m}\varepsilon\right)^4}}$		
17	$\begin{array}{c c} 17 & \textbf{Dokładność zera} \\ \textbf{mostka:} (r_{21}=0) \end{array}$			$\begin{array}{c c} \mathbf{ad} & & \delta_{210} = \delta_{10} - \delta_{20} + \delta_{30} - \delta_{40} & & \mathbf{blad} \\ \mathbf{graniczny} & & & \left \delta_{210} \right _{\mathbf{graniczny}} \end{array}$	$=\sum_{i=1}^{n} a_i ^2$	$ \hat{\delta}_{i0} \qquad \text{miara losowa} \\ \text{(niepewność)} \qquad \overline{\delta}_{210} = \sqrt{\sum \overline{\delta}_{i0}^2} $		

Tab. 1. Miary dokładności transmitancji prądowo-napięciowej i napięciowej nieobciążonego mostka rezystancyjnego 4R

.

N r	Typ mostka	Typ Miary mostka R _i		a)	Miary $\delta_{r_{21}}$, $ \delta_{r_{21}} $, $\overline{\delta}_{r_{21}}$ przy $R_{10}=R_{10}$ ti.: $m=n=1$	k ₂₁	b) Miary δ_{k21} , $ \delta_{k21} $, $\overline{\delta}_{k21}$ przy	
1	$\frac{\textbf{Zmienne } 4R_i}{\text{Dowolne } \varepsilon_i}$ $R_i = R_{10}(1+\varepsilon_i)$		$\frac{R_{10}}{4} \frac{\Delta L\left(\varepsilon_{i}\right)}{1 + \frac{\Sigma \varepsilon_{i}}{4}}$	$\delta_{r21} \equiv \frac{\Delta_{r21}}{t_0}$	$\frac{\frac{1}{1+\frac{\Sigma\varepsilon_i}{2}}\sum_{i=1}^{4}(1+\varepsilon_i)\left[(-1)^{i-1}(1+\varepsilon_j)-\frac{r_{21}}{R_{j0}}\right]\delta_{R_i}}{\frac{1}{1+\frac{\Sigma\varepsilon_i}{4}}\int_{1}^{4}(1+\varepsilon_i)\left[(-1)^{i-1}(1+\varepsilon_j)-\frac{r_{21}}{R_{j0}}\right]\delta_{R_i}}$	$\frac{0,25\Delta L(\varepsilon_i)}{(1+\varepsilon_{12})(1+\varepsilon_{34})}$ gdzie: $\varepsilon_{12} = \frac{1}{2}(\varepsilon_1 + \varepsilon_2)$	$\frac{\underline{\mathbf{A}}_{20}}{\delta_{k21}} \equiv \frac{\underline{\Delta}_{r21}}{k_0}$	$\frac{(1+\varepsilon_1)(1+\varepsilon_2)}{[1+0.5(\varepsilon_1+\varepsilon_2)]^2} (\delta_{R_1} - \delta_{R_2}) + \frac{(1+\varepsilon_3)(1+\varepsilon_4)}{[1+0.5(\varepsilon_1+\varepsilon_2)]^2} (\delta_{R_3} - \delta_{R_4})$
2	$\underbrace{\underline{\mathcal{E}}_{R_1} = \pm \underline{\mathcal{E}}_{R_2}}_{R_1 \subset R_2} \mathbb{B}$ $\underbrace{A[}_{R_4 \cup R_3} \mathbb{B}_{R_3} \mathbb{B}_{R_1 = R_3} \mathbb{B}_{R_2 = R_3} \mathbb{B}_{R_1 = R_3} \mathbb{B}_{R_2 = R_3} \mathbb{B}_{R_3} $	$\begin{vmatrix} \delta_{i0} \\ \vdots \\ \Delta_{zi} \end{vmatrix} = \begin{vmatrix} \Delta_{z} \end{vmatrix}$	$R_{10} \varepsilon$ $(\varepsilon_{\Sigma R} = 0$	$ \delta_{r21} $	$\begin{aligned} (\mathrm{He}) & \left(\delta_{10} + \delta_{30} - (\mathrm{He}) \left(\delta_{20} + \delta_{40} \right) + \Delta_{4} + \Delta_{3} - \Delta_{2} - \Delta_{4} \right) \\ &= 4 \left[\left \delta_{0} \right + \left \Delta_{c} \right \right] \end{aligned}$	$\varepsilon_{34} = \frac{1}{2}(\varepsilon_3 + \varepsilon_4)$	$ \delta_{k21} $	$\frac{\left \left(1-\varepsilon^{2}\right)\left(\delta_{0}-\delta_{0}+\delta_{0}-\delta_{0}\right)+\left(1-\delta_{0}\Delta_{1}+\Delta_{2}\right)-\left(1+\delta_{0}\Delta_{2}+\Delta_{2}\right)\right }{4\left[\left(1-\varepsilon^{2}\right)\left \delta_{0}\right +\left \Delta_{\varepsilon}\right \right]}$
4	$=R_{10}(1+\varepsilon)$ $R_{2}=R_{4}$ $=R_{10}(1-\varepsilon)$ <u>Zmienne</u>	$\overline{\overline{\delta}}_{i0} \equiv \overline{\overline{\delta}}_{0}$ $\overline{\overline{\Delta}}_{\varepsilon i} \equiv \overline{\overline{\Delta}}_{\varepsilon}$	ɛ ?1)	$\overline{\delta}_{r21}$	$\frac{2\sqrt{(1+\varepsilon^2)}\overline{\delta_0^2}+\overline{\Delta}_{\varepsilon}^2}{1-\frac{4}{2}}$		$\overline{\delta}_{k21}$	$\frac{2\sqrt{\left(1-\varepsilon^{2}\right)^{2}\overline{\delta}_{0}^{2}+\left(1+\varepsilon^{2}\right)\overline{\Delta}_{\varepsilon}^{2}}}{\frac{\left(1+\varepsilon_{1}\right)\left(\overline{\delta}_{10}-\overline{\delta}_{20}\right)+\Delta_{\varepsilon1}}{\epsilon}}$
5	<u><i>K</i>1, <i>K</i>3</u> <u><i>E</i>1?<i>E</i>3</u>		$R_{10} \frac{\varepsilon_1 + \varepsilon_3 + \varepsilon_1 \varepsilon_3}{4 + \varepsilon_1 + \varepsilon_3}$	δ_{r21}	$\frac{1}{1 + \frac{\Sigma \varepsilon_i}{4}} \sum_{i=1}^{i=1} (1 + \varepsilon_i) \left[(-1)^{i-1} (1 + \varepsilon_j) - \frac{\omega_i}{R_{j_0}} \right] \delta_{R_i}$ dla <i>i</i> =1, 2, 3,4 jest <i>j</i> =3, 4, 1, 2	$\frac{\varepsilon_1 + \varepsilon_3 + \varepsilon_1 \varepsilon_3}{(2 + \varepsilon_1)(2 + \varepsilon_3)}$	δ_{k21}	$+\frac{(1+0,5\varepsilon_{1})^{2}}{(1+\varepsilon_{3})(\delta_{30}-\delta_{40})+\Delta_{\varepsilon_{3}}}{(1+0,5\varepsilon_{3})^{2}}$
6 7	$ \underbrace{E_1 = E = E_3}_{R_1 C R_{20}} B \\ A[\qquad B B B B B B B B B B$	$\left \delta_{i0} \right = \delta_{0}$	$rac{1}{2}R_{10} \varepsilon$	$ \delta_{r21} $	$\frac{(1+\varepsilon)\left(\delta_{10}-\delta_{20}+\delta_{30}-\delta_{40}\right)+\Delta_{\varepsilon 1}+\Delta_{\varepsilon 3}}{\left \delta_{r_{21}}\right _{m}=4(1+0.5\varepsilon)\left \delta_{0}\right +2\left \Delta_{\varepsilon}\right }$	$\frac{\varepsilon}{2(1+1)}$	$ \delta_{k21} $	$\frac{(1+\varepsilon)(\sigma_{10}-\sigma_{20}+\sigma_{30}-\sigma_{40})+\Delta_{\varepsilon 1}+\Delta_{\varepsilon 3}}{(1+0.5\varepsilon)^2}$ $\left \delta_{k_2}\right _m = 2\frac{1+\varepsilon}{(1+0.5\varepsilon)^2}\left(2\left \delta_0\right +\frac{ \Delta_{\varepsilon} }{1+\varepsilon}\right)$
8	$R_{1} = R_{10}(1 + \varepsilon)$ $R_{2} = R_{4} = R_{10}$ $R_{3} = R_{10}(1 + \varepsilon)$	$\begin{aligned} \Delta_{\varepsilon i} = \Delta_{\varepsilon} \\ \overline{\delta}_{i0} \equiv \overline{\delta}_{0}, \\ \overline{\Delta}_{\varepsilon i} \equiv \overline{\Delta}_{\varepsilon} \end{aligned}$		$\bar{\delta}_{r21}$	$2\sqrt{\left(1+\varepsilon+0.5\varepsilon^2\right)\overline{\delta}_0^2+0.5\overline{\Delta}_\varepsilon^2}$	$2(1+\frac{1}{2}\varepsilon)$	$\overline{\delta}_{k21}$	$\frac{2}{(1+0,5\varepsilon)^2} \sqrt{(1+\varepsilon)^2 \overline{\delta}_0^2 + \overline{\Delta}_\varepsilon^2}$
9	$\frac{\underline{Zmienne}}{\underline{R}_1, \underline{R}_2}$ $\underline{\varepsilon_1} \cdot \cdot \cdot \cdot \underline{\varepsilon_2}$		$R_{10}\frac{\varepsilon_1-\varepsilon_2}{4+\varepsilon_1+\varepsilon_2}$	δ_{r21}	$ \begin{array}{c} \left(1 - \frac{1}{4}\epsilon_{1} + \frac{1}{4}\epsilon_{2}\right) \left[\left(1 + \epsilon_{1}\right)\delta_{10} + \Delta_{21} \right] + \left(1 + \frac{3}{4}\epsilon_{1} + \frac{1}{4}\epsilon_{2}\right)\delta_{30} + \\ - \left[\left(1 + \frac{1}{4}\epsilon_{1} - \frac{1}{4}\epsilon_{2}\right) \left(1 + \epsilon_{2}\right)\delta_{20} + \Delta_{22} \right] - \left(1 + \frac{3}{4}\epsilon_{1} + \frac{1}{4}\epsilon_{2}\right)\delta_{40} \end{array} $	$\frac{\varepsilon_1 - \varepsilon_2}{4 + 2(\varepsilon_1 + \varepsilon_2)}$	δ_{k21}	$\frac{(1+\varepsilon_1)(1+\varepsilon_2)(\phi_{10}-\phi_{20})+(1+\varepsilon_2)\Delta_{\varepsilon_1}+(1+\varepsilon_1)\Delta_{\varepsilon_2}}{\left[1+Q5\left(\varepsilon_1+\varepsilon_2\right)\right]^2}+\left(\delta_{30}-\delta_{40}\right)$
10	$\underbrace{\underline{\mathcal{E}}_{1} = \underline{\mathcal{E}}_{2}}_{R_{1} \ C \ R_{2}} B$	$\left \delta_{i0}\right = \delta_{0}$	$\frac{1}{2}R_{\circ}\varepsilon$	1.5	$\frac{(1-Q_{5c})[(1+c)\delta_{10}+\Delta_{21}-\delta_{40}]+}{-(1+Q_{5c})[(1-c)\delta_{20}+\Delta_{22}-\delta_{30}]}$	$\frac{1}{2}\varepsilon$	1 21	$\frac{(1-\varepsilon^2)(\delta_{10}-\delta_{20})+(1-\varepsilon)\Delta_{21}+(1+\varepsilon)\Delta_{22}+\delta_{30}-\delta_{40}}{\delta_{10}(1-\varepsilon_{10})\delta_{21}+\delta_{21}\delta_{22}+\delta_{30}-\delta_{40}}$
11	$R_1 = R_{10}(1 + \varepsilon)$ $R_2 = R_{10}(1 - \varepsilon)$ $R_3 = R_4 = R_{10}$	$\begin{split} \left \Delta_{\varepsilon i} \right = \left \Delta_{\varepsilon} \right \\ \overline{\delta}_{i0} \equiv \overline{\delta}_{0}, \\ \overline{\Delta}_{\varepsilon i} \equiv \overline{\Delta}_{\varepsilon} \end{split}$	2 10 -	$\overline{\delta}_{r21}$	$\frac{1}{\sqrt{2}} \sqrt{\left[1 + \left(1 - \varepsilon^2\right)^2\right]\overline{\delta}_0^2 + \left(1 + \varepsilon^2\right)\overline{\Delta}_{\varepsilon^1}^2}$	2 -	$\overline{\delta}_{k21}$	$\frac{1}{\sqrt{2}} \sqrt{\left[1 + \left(1 - \varepsilon^2\right)^2\right]\overline{\delta}_0^2 + \left(1 + \varepsilon^2\right)\overline{\Delta}_{e1}^2}$
13	<u>Zmienne</u> <u>R₁, R₄ <u>ɛ₁?-ɛ</u>4</u>		$R_{10} \frac{\varepsilon_1 - \varepsilon_4}{4 + \varepsilon_1 + \varepsilon_4}$	δ_{r21}	$= \left(1 - \frac{1}{4}\varepsilon_{1} + \frac{1}{4}\varepsilon_{4}\right) \left[(1 + \varepsilon_{1})\delta_{10} + \Delta_{\varepsilon 1} \right] - \left(1 + \frac{3}{4}\varepsilon_{1} + \frac{1}{4}\varepsilon_{4}\right)\delta_{20} + \left(1 + \frac{3}{4}\varepsilon_{1} + \frac{1}{4}\varepsilon_{4}\right)\delta_{30} - \left[(1 + \frac{1}{4}\varepsilon_{1} - \frac{1}{4}\varepsilon_{4})(1 + \varepsilon_{4})\delta_{40} + \Delta_{\varepsilon 4} \right]$	$\frac{\varepsilon_1-\varepsilon_4}{(2+\varepsilon_1)(2+\varepsilon_4)}$		$\frac{1+\varepsilon_1}{\left(1+0.5\varepsilon_1\right)^2} \left(\delta_{_{R1}}-\delta_{_{20}}\right) + \\ + \frac{1+\varepsilon_4}{\left(1+0.5\varepsilon_4\right)^2} \left(\delta_{_{30}}-\delta_{_{R4}}\right)$
14	$\underbrace{\underline{\mathcal{E}}_1 = \underline{\mathcal{E}} = -\underline{\mathcal{E}}_4}_{R_1 \ C \ R_{20}}$				$\begin{array}{c} \left(1-0.5\varepsilon\right)\left[\left(1+\varepsilon\right)\delta_{10}+\Delta_{c1}-\delta_{20}\right]+\\ -\left(1+0.5\varepsilon\right)\left[\left(1-\varepsilon\right)\delta_{40}+\Delta_{c4}-\delta_{30}\right]\end{array}$		δ_{k21}	$\frac{4}{\left(1-0.25\varepsilon^{2}\right)^{2}}\left[\left(1-0.75\varepsilon^{2}\right)\left \left.\delta_{0}\right.\right + \frac{1+0.25\varepsilon^{2}}{2}\left \left.\Delta_{\varepsilon}\right.\right \right]$
15	$R_4 D R_{30}$ $R_1 = R_{10}(1 + \varepsilon)$	$\begin{vmatrix} \delta_{i0} \end{vmatrix} = \delta_0 \end{vmatrix}$ $\begin{vmatrix} \Delta_{\varepsilon i} \end{vmatrix} = \begin{vmatrix} \Delta_{\varepsilon} \end{vmatrix}$	$\frac{1}{2}R_{10} \varepsilon$	$ \delta_{r21} $	$4 \left(1-0,25 \varepsilon^{2}\right) \left \delta_{0} \right + 2 \left \Delta_{\varepsilon} \right $	$\frac{2\varepsilon}{4-\varepsilon^2}$	$ \delta_{k21} $	$\frac{(1+\varepsilon)(\delta_{10}-\delta_{20})+\Delta_{e1}}{(1+0.5\varepsilon)^2} + \frac{(1-\varepsilon)(\delta_{30}-\delta_{40})-\Delta_{e1}}{(1-0.5\varepsilon)^2}$
16	$R_2 = R_3 = R_{10}$ $R_4 = R_{10}(1 - \varepsilon)$	$ \partial_{i0} \equiv \partial_0, \\ \overline{\Delta}_{\varepsilon i} \equiv \overline{\Delta}_{\varepsilon} $		$\bar{\delta}_{r21}$	$\sqrt{2}\sqrt{[1+0.25\varepsilon^{2}+(1-0.5\varepsilon^{2})^{2}]}\overline{\delta_{0}^{2}} + (1+0.25\varepsilon^{2})\overline{\Delta_{\varepsilon}^{2}}$		$\overline{\delta}_{k21}$	$\frac{2\sqrt{(1-0.75\varepsilon^2)^2}\delta_0^2+0.5(1+0.25\varepsilon^2)^2\Delta_{\varepsilon}^2}{(1-0.25\varepsilon^2)^2}$
17	$R_1 C R_{20}$	1.21.1.21	D a	δ_{r21}	$\frac{(1+\varepsilon_1)\partial_{10}+\Delta_{\varepsilon 1}+(1+\frac{1}{2}\varepsilon_1)\partial_{30}-(1+\frac{1}{2}\varepsilon_1)(\partial_{20}+\partial_{40})}{(1+\frac{1}{4}\varepsilon_1)^2}$		δ_{k21}	$\frac{(1+\varepsilon_1)(\sigma_{10}-\sigma_{20})+\Delta_{\varepsilon_1}}{(1+0.5\varepsilon_1)^2}+\delta_{30}-\delta_{40}$
18	$\begin{array}{c} A \\ \hline \\ R_{40} \\ D \\ \end{array} \begin{array}{c} B \\ R_{30} \\ \hline \\ R_{30} \end{array}$	$\begin{vmatrix} \delta_{i0} \\ = \delta_0 \end{vmatrix} \neq 0$	$\frac{\frac{\kappa_{10}}{4}}{\frac{\varepsilon_1}{1+\frac{1}{4}\varepsilon_1}}$	$ \delta_{r21} $	$\frac{\left\lfloor 4\left(1+0,25\varepsilon_{1}\right)^{2}+\varepsilon_{1}\right\rfloor \left \delta_{0}\right +\left \Delta_{\varepsilon_{1}}\right }{\left(1+0,25\varepsilon_{1}\right)^{2}}$	$\frac{\varepsilon_1}{4\left(1+\frac{1}{2}\varepsilon_1\right)}$	$ \delta_{k21} $	$2\left\lfloor \frac{1+\varepsilon_1}{\left(1+0.5\varepsilon_1\right)^2}+1\right\rfloor \left \delta_{20}\right + \frac{\left \Delta_{\varepsilon 1}\right }{\left(1+0.5\varepsilon_1\right)^2}$
19	$R_1 = R_{10}(1 + \varepsilon_1)$ $R_2 = R_3 = R_4 = R_{10}$	$\overline{\delta}_{i0} \equiv \overline{\delta}_{0}$ $\overline{\Delta}_{\varepsilon 1} \neq 0$	$(\epsilon_{\Sigma R}=0,25 \epsilon_1)$	$\bar{\delta}_{r21}$	$\frac{\sqrt{\left\{ \left(1+\varepsilon_{i}\right)^{2}+\left(1+\frac{1}{2}\varepsilon_{i}\right)^{2}\left[2+\left(1+\frac{1}{2}\varepsilon_{i}\right)^{2}\right]\right\} \overline{\delta}_{0}^{2}+\overline{\Delta}_{s1}^{2}}}{\left(1+0.25\varepsilon_{i}\right)^{2}}$		$\overline{\delta}_{k21}$	$\frac{\sqrt{2\left[\left(1+\varepsilon_{1}\right)^{2}+\left(1+0.5\varepsilon_{1}\right)^{4}\right]\overline{\delta}_{20}^{2}+\overline{\Delta}_{\varepsilon^{1}}^{2}}}{\left(1+0.5\varepsilon_{1}\right)^{2}}$
Dokładność zera mostka: (r ₂₁ =0)			błąd bieżący	δ_{i}	$\sum_{210} = \delta_{10} - \delta_{20} + \delta_{30} - \delta_{40} \qquad blad \\ graniczny$	$\left \delta_{210}\right _{m} = \sum_{m}$	$\left \delta_{i0}\right $	miara losowa (niepewność) $\overline{\delta}_{210} = \sqrt{\sum \overline{\delta}_{10}^2}$

Tab. 2. Miary transmitancji r₂₁ i k₂₁ niezrównoważonych mostków 4R symetrycznych w równowadze (Z. Warsza Pl.)

Bezwzględny błąd zera napięcia wyjściowego Δ'_{DC0} występuje, gdy równocześnie wszystkie przyrosty ε_i =0. Przy pomijalnym wpływie dodatkowych źródeł w układzie (np. napięć termoelektrycznych) wynika on z błędów początkowych δ_{i0} rezystancji R_{i0} i wynosi:

$$\Delta_{U'DC0} = J\Delta_{r210} = T_0' \left(\delta_{10} + \delta_{30} - \delta_{20} - \delta_{40} \right)$$
(42)

Podobnie jak transmitancja r_{210} , napięcie początkowe mostka może być takie samo dla wielu kombinacji błędów δ_{i0} jego

rezystancji początkowych. Błąd δ'_{Um0} ma wartość skończoną nawet, gdy przy transmitancji $r_{21}=0$ występuje błąd jej zera Δ_{210} .

Ze wzorów dla błędów chwilowych transmitancji r_{21} wyznacza się błędy systematyczne graniczne i miary przypadkowe napięcia wyjściowego.

W równoczesnych pomiarach wieloparametrowych kilku przyrostów rezystancji mostka mierzy się też zmiany napięcia wejściowego [1, 2, 4]. Dokładność tych zmian ocenia się w oparciu o miary przyrostów rezystancji wejściowej układu [1, 5, 6].

10. Podsumowanie

Przy wyznaczaniu błędów i niepewności pomiarowych, by nie otrzymać błędnych zależności należy opierać się na pełnych wzorach parametrów zewnętrznych mostków.

Wyznaczono miary dokładności prądowo-napięciowej oraz napięciowej transmitancji rozwarciowej dla kilku najczęstszych przypadków pracy mostka 4R jako czwórnika o skojarzonych przyrostach rezystancji 4 lub 2 ramion oraz przy zmiennym 1 ramieniu. Wzory te ujmują łącznie i bez uproszczeń błędy rezystancji stałych oraz rezystancji zmiennych w dużych granicach.

Dzięki opisowi miar rezystancji zmiennych poprzez miary ich wartości początkowych w równowadze mostka i miary przyrostów, podane zależności można stosować dla różnych czujników rezystancyjnych wieloelementowych sprzężonych i pojedynczych różnych wielkości i o dowolnych charakterystykach przetwarzania.

Szereg wniosków szczegółowych podano w treści pracy.

Analizę dokładności parametrów mostka przy innych sposobach zasilania, w tym dwu-prądowym oraz przy dowolnym obciążeniu i zasilaniu zawiera monografia [1] i praca [6]. Miary mostka jako czwórnika zasilanego napięciowo omówiono szczegółowo w częściach 2 prac [5, 6] i [10]. Jako przykład zastosowania w [7] i [10] wyznaczono miary zasilanego prądowo mostka z czujnikami przemysłowymi PT100 i różnej korekcji zera w układzie.

11. Literatura

- Warsza Z.: Immitancyjne układy czterobiegunowe (4T) w pomiarach wieloparametrowych. Przemysłowy Instytut Automatyki i Pomiarów, Monografia, Warszawa 2004.
- [2] Warsza Z. L.: Zastosowanie prądowo zasilanego mostka rezystancyjnego w pomiarach dwuparametrowych (2D). Elektronika (wkładka Technika Sensorowa) część 1 nr 12 2004 s. 84 – 87, część 2 nr 1 2005 s.63-68.
- [3] Warsza Z. L.: Unbalanced DC bridges part 127 Handbook of Measuring Systems Design, ed. by P. Sydenham and R. Thorn, 2005 Jon Wiley & Sons, Ltd., Chichester UK (+Internet)
- [4] Warsza Z. L.: Two Parameter (2D) Measurements in Four Terminal (4T) Impedance Bridges as the New Tool of Signal Conditioning, Part 1 and 2. Proc. of IMEKO-TC 4 Symposium Gdynia/Jurata 12-15 Sept. 2005, vol. I p. 31- 42
- [5] Warsza Z.L.: Miary dokładności rezystancyjnego mostka jako czwórnika typu X w pomiarach wieloparametrowych Części (1) i (2) Materiały XIII Międzynarodowego Seminarium Metrologów, Zeszyt Naukowy Politechniki Rzeszowskiej nr 223 seria Elektrotechnika nr 28, s.213 - 236, 2005.
- [6] Warsza Z.L.: Miary dokładności parametrów zewnętrznych czwórnika typu X o zmiennych rezystancjach. Elektronika 2006 Część 1 nr 2 s. 45-52, Część 2 nr 3 s. 49-53.
- [7] Warsza Z.: Miary dokładności pomiarów mostkiem z czujnikiem o rezystancji zmiennej w dużych granicach. Materiały Konferencji PPM 06 "Podstawowe Problemy Metrologii", oddz. PAN w Katowicach, Konferencje nr 11 2006, s. 213-224
- [8] Warsza Z: Dokładność mostka rezystancyjnego jako czwórnika. Część 1 - wzory podstawowe miar transmitancji. PAK nr 9bis 2006 s. 193-197
- [9] Warsza Z. L.: Backgrounds of two variable (2D) measurements of resistance increments by cascade bridge circuit Proc. of SPIE vol.6347 "Photonics application" ed. R. Romaniuk (2006), 63472R 1-10
- [10] Warsza Z.: Miary dokładności mostka o rezystancjach zmiennych w dużych granicach – z przykładem pomiarów temperatury przemysłowymi czujnikami PT100. Przegląd Elektrotechniki 2007 nr 7-8, s. 48-59.

Artykuł recenzowany

INFORMACJE

Najnowsza książka Wydawnictwa PAK

Na przełomie sierpnia i września ukazała się kolejna książka Wydawnictwa PAK autorstwa Tomasza Boczara pt.: Energia wiatrowa. Aktualne możliwości wykorzystania.

W niniejszej książce przedstawiono aktualne możliwości wykorzystania energii wiatru do produkcji energii elektrycznej na obszarze Europy, ze szczególnym uwzględnieniem potencjalnych zasobów i stopnia ich wykorzystania na terenie Polski, a także województwa opolskiego. Ponadto scharakteryzowano podstawowe

założenia polityki krajów UE oraz strategii energetycznej Polski wobec OŹE.

Książka skierowana jest przede wszystkim do studentów oraz wykładowców prowadzących zajęcia dydaktyczne na kierunkach elektrycznych, jak również związanych z inżynierią i ochroną środowiska. Opisane zagadnienia mogą stanowić materiał dydaktyczny związany z aktualnymi możliwościami oraz przyszłymi kierunkami w pozyskiwaniu energii wiatru do produkcji energii elektrycznej.

Zamówienia prosimy składać na adresy PAK:

Wydawnictwo PAK 00-050 Warszawa, ul. Świętokrzyska 14A, tel./fax: 022 827 25 40

Redakcja PAK 44-100 Gliwice, ul. Akademicka 10, p. 30b, tel./fax: 032 237 19 45, e-mail: wydawnictwo@pak.info.pl