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Abstract

The cross-entropy method is a new approach to estimate rare event
probabilities by Monte Carlo simulation. Application of this method for
structural reliability analysis is presented. The efficiency of the approach is
tested on some benchmark problems typical for reliability analysis.
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Zastosowanie adaptacyjnych metod
symulacyjnych w analizie niezawodnosci

Streszczenie

Metoda wzajemnej entropii (ang. cross-entropy) jest nowa modyfikacja
metod Monte Carlo stuzaca do oszacowania prawdopodobienstwa
rzadkich zdarzen. W pracy przedstawiono zastosowanie tej metody do
rozwigzania zagadnienia analizy niezawodnos$ci. Jej efektywnos$¢ jest
oceniona na przyktadach charakteryzujacych si¢ trudnosciami typowymi w
analizie niezawodnosci.

Slowa kluczowe: analiza niezawodnosci, symulacja, metoda Monte Carlo
1. Introduction

Evaluation of the probability of failure is an essential problem
in a structural reliability analysis. Probability of failure is defined
as the integral of probability density function over the region in
the random variable space, for which failure occurs [5]. Due to
a usually high number of random variables in real life
applications, numerical integration is inefficient for this problem.
In practice, first or second order approximation methods
(FORM/SORM [5]) are often used to evaluate the probability of
failure. However, applicability of these methods is limited only to
problems satisfying certain conditions. An alternative is the Monte
Carlo integration. Since a failure event is usually rare, it is
common to apply importance sampling in order to facilitate
calculations. Some well developed algorithms for structural
reliability are available, however all of them have -certain
limitations. Thus, the authors found it interesting to investigate
efficiency of the cross-entropy approach applied to structural
reliability analysis problems. The cross-entropy method is
a recently proposed approach for simulation of rare events [6]. Its
application for structural reliability analysis is very simple and
requires only a straightforward formulation of the problem.
Basically the cross-entropy method is a form of importance
sampling. It is interesting because it is based on a very elegant and
efficient approach to selection of the sampling distribution by
adaptive simulation without need of any additional optimisation
algorithm. The results of numerical experiments presented in the
paper show that application of the cross-entropy method seems to
be a reasonable approach to solving structural reliability problems.

2. Structural reliability analysis by
importance sampling

The time invariant structural reliability problem is usually
defined as follows [5]. Uncertain structural parameters are
represented by a real-valued random vector X = (X 1 Xgsenn X, n),
with joint probability density function f(x).
performance with respect to random parameters is reflected by a
limit state function g(x). The limit state function is defined to

Structural

take negative values for parameters for which failure occurs. Thus,
the limit state function defines a subset in the random variable
space called the failure domain = {x: g(x)S O}. Finally, the

probability of failure is defined as

P, = If(x)dx M
Q

P, can be estimated by means of Monte Carlo integration. Since

for engineering structures a small probability of failure is desired,
the crude Monte Carlo method is inefficient for such problems.
Therefore, application of variance reduction techniques, like
importance sampling, is usually attempted. The formula for
importance sampling in evaluation of P, is based on (1) rewritten

as follows

P - j %h(x)dx _ E{I(g(x) < o)%’(‘))} RS

where h(x) is an importance sampling probability density, / () is
the indicator function of the failure domain, and £, denotes the
expectation operation with respect to the density h(x) Having n

independent samples X(k), i=1,...,n from the distribution with
density h(x), the expectation in (2) can be estimated from

~ 71 n ®) fx(i) 3
P/.nlzlll[g(x SO)hx" €)

The optimal density function h(x) that minimizes variance of
this estimator has the following form
) s
— <0
P/» 5 lf g (X) > (4)
0, otherwise

h*(x)z
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However, this formula is rather theoretical, since generation of
independent random variables requires the knowledge of the term
of interest Pf. In practice, the distribution, from which samples

are produced, is usually chosen to resemble the distribution with
density h*(x).

3. Adaptive Importance sampling

In real life applications, the choice of the sampling distribution
is usually reduced to a parametric family of distributions for which
it is easy to generate independent random samples. Moreover,
a common practice is to employ the family F = { I (x,v)},v eV
(v is a vector of parameters) including the distribution of the
random vector X for which the reliability problem is defined. The
probability density function of X will be denoted by f (x,vo).

Obviously, the parameters v should be selected to facilitate the
estimation of probability of failure by the formula (3).

In general, the parameters of the sampling distribution can be
obtained by minimizing variance of the importance sampling
estimator. This problem can be formulated as follows

min V"rf(*"){lgf (X)Jm} , :

or alternatively by

. * (X, v,
I"I}IEILE]{E/ (x,v)|:[Q>/ (X)ff‘q(()(,‘;)):|} (6)

The above optimisation problem can be solved using the
following estimate of the expectation

LA )/ (X(")avo)f(x("),vo)
IIQV”{”;IW(X FAx03) X0 @]

where f (x,v S) is the probability density of the random sample

X(i), i=l...,n.

A simple adaptive algorithm for estimation of failure
probability based on the formula (7) can be formulated as
follows:

1. Take f(x, Vg ) = f(x, VO). Generate the sample X(l), . .,X(”) with
density f (x, v S) and solve the optimization problem (7). Denote

the solution as v*. Assume V" as the estimate of the optimal
parameter vector v" .
2. Estimate the probability of failure with (3) taking h(x) =f (x, v )
In order to obtain more accurate estimate of v, take vy = V"
and repeat the first step of the algorithm.

4. The Cross-Entropy method

An alternative method for selection of the importance sampling
distribution parameters can be formulated using the cross-entropy
[6]. The cross-entropy, known also as the Kullback-Leibler
distance, of two probability distributions with densities £ (x) and

g(x) is defined as

D(f.g)= | f(x)ln%"‘))dx : ®)

It should be mentioned that the cross-entropy is not a distance
in the formal sense, since for instance, it does not satisfy the

symmetry requirement D(f, g) # D(g, f) .
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The cross-entropy of the distribution #* given by (4) and the
distribution £ (x, v) € F can be expressed as follows

. _ [p 13_;]19, (x)f(x,vo)
Dl (x). £ (x.v)) = [P I (x)/(x. vo)lnw

= J.Pf"IQ/ (x)f(x, v, )(ln(Pf"IQ/ (x)f(x, v[,))— In f(x, v))dx
®

dx

Because the distributions /#* and f(x,v) should be similar, it

seems reasonable to require the cross-entropy of distributions 4"
and f(x,v) to be minimal. Thus the optimal parameter v

according to the cross-entropy criteria is the solution of the
following problem

min{D(h*(x), f(x, V))}, (10)

vel
or alternatively [4]

maxiD(v) = Ef(x,vﬂ)llnf (X)In £(X, V)J} (11)

vel

The solution of the problem (10) can be approximated by means
of importance sampling

max{[)n(v):lz I, (x) f X(‘f'),v0 In f(xmjv)} (12)
n i

The problems (11) and (6) aim at the same goal; finding
parameters of the importance sampling distribution which are
optimal in some sense. Because the variance of the estimate is
minimized in (6), it seems that considering the problem (11) is
pointless. However the cross-entropy method is based on a much
nicer optimisation problem, which can be solved even analytically
in some cases [2]. Moreover, according to [4], the proof can be
found that the solutions of both problems are equivalent for
probability of failure going to zero. Thus, the application of the
cross-entropy method is justified if only savings by solving of the
easier optimisation problem compensate the use of the sub-optimal
sampling density.

Because for typical problems the function D in (11) is convex
and differentiable with respect to v, the solution of (12) can be
found by solving the following system of equations:

. 1 N (X, :
VDn(v)z;;lg_/(x@)%ww(}((>,v)=0. (13)

The above system of equations takes very simple form for
independent random variables. For instance consider a set of
independent normal variables with joint probability density
functions given by

T 1 _(xi*#i)z 14
¢(x,u,c)ﬂ0imexp( 207 J, (14)

where p:{yl,...,,un} are mean values and c:{al,‘..,an} are

standard deviations of the components. The gradient of the
logarithm of the probability density has elements of the following
form

olng(x.p.0) _ p -,

! 5 il as)
Hi o;
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Thus, the following set of equations for optimal parameters of
(14) can be obtained by substituting formulas (15) and (16) into
(13):

lz"; X1, (X0)-2 x"0,1
Ao,

.. 15 p(X".ps. 0 (17)
H = 7 ’

1 0 ox701)

37, (x _

n; Qf( )gDXl),llS,GS

18 (x0) ex )
PR (s, (X )m (18)

n

: 1 0 elx0,1
n ;IQ/ (X )¢7 X(i)aus’cs

With the set of equations (13), the algorithm proposed for
minimum variance criteria can be adapted easily for the
probability of failure estimation using the cross-entropy optimal
parameters.

It should be mentioned that results (17) and (18) are equivalent
to the well-known approach employing the sampling distribution
with the same first or second moments as distribution (4) [1].

5. Adaptive algorithm

When the probability of failure is vary small the basic cross-
entropy algorithm is inefective and the following adaptive
algorithm proposed in [4] should be employed. Here it is
presented with notation used in structural reliability problems.

The parameters needed to be specified for this algorithm are p,
a>1, §>0 and n which is the number of simulations made in
each iteration. The algorithm proceeds as follows:

1. Initialization of the algorithm. Set p, = p. For a sample

X=X"..,X" from the distribution with probability density
f(x,v,). (v, = ¥,) evaluate a sample quantile p of the random

variable ¥, = g(x(i)), and denote it by 7, :

Ple(X)<7,]< . (19)
Set r=1.
2. Use the same sample X(l),...,X(”) to solve the optimisation
problem:

n X (’) R
s, el 15, (<O ) 0

> Tl

where [ (e(x)<7rs) is the indicator function of the set for which

g (X) V-
3. Generate a new sample X(‘),...,X(") from probability density
function f(x,@,), andset p, =p.

4. For the current sample X(l),...,X("), evaluate quantile p, of the
random variable Y, = g(X(i)) and denote it by 7,

5.1f y,<0 set 7, =0 and find the estimate of the parameter v*
denoted by v , by solving the following problem

., (@)
. :argvglax{;;]m(x(,»))%((%ﬂ%i))lnf(x(i),v)}. (21)

Go to step 7.
6.1f y, > 0 check if there exist p such that 7 , being a p -quantile

of the g(X(i)),...,g(X(i)),
7 <max{0,7,, -6}:

random  sample satisfies

If p exists and p=p,, then set r=r+1 and repeat the

iterations from step 2;
If p existsand p < p, ,thenset p, = p and return to the step 4;

Otherwise (for example when p does not exist), increase the

number of simulations in the step as n =an and return to the
step 3.
7. Estimate the probability of failure with importance sampling

using the sampling density function f (x, v, ) .
In [4] it was proven that the algorithm converges in a finite

number of iterations to the solution of the problem (11) with
probability 1.

6. Numerical examples

The efficiency of the algorithm presented in the preceding
section was tested on the benchmark problems used in [3] to
evaluate the performance of various importance sampling
algorithms. The limit state functions used in the benchmark
problems were selected in order to evaluate the algorithms
with respect to difficulties characteristic for reliability
analysis.

The following examples were computed in the standard normal
space. The sampling distributions were chosen from multivariate
normal family with the identity covariance matrix. The mean
values of the components were adjusted according to (17).
Compared to the algorithm presented above, a slightly modified
computational scheme was used. The parameter p was kept

constant during the execution of the algorithm. In each iteration
the simulations were performed until distribution parameters were
estimated with required accuracy ¢,. For each problem some

initial runs of the algorithm were performed in order to select
a combination of p and ¢, allowing to estimate the probability of

failure with reasonable computational effort. However, the aim of
the initial runs was the selection of a reasonable set of parameters,
not the optimisation of them. Then, each problem was solved
several hundred of times and a mean number 7 of the samples
required for estimation of the probability of failure with 0.1
coefficient of variation was calculated. Some of the numbers
presented in the following may seem to indicate that the
considered algorithm is inefficient. However it should be
remembered that the given number of simulations shows the total
effort required for solving the problem, including estimation of the
sampling distribution parameters.

Example 1. High number of variables and probability levels

The aim of this example is to evaluate performance of the
algorithm for various levels of probability and for different
number of random variables. The limit state function used in this
example is the n-dimensional hypersurface:

g =Nmp-U, @2)

where U ;o j=L...,m are the standard normal random variables
and g is the reliability index.

The numerical experiments were performed for the following
values of the parameters: f=1.0, =50, #=10.0 and m=2,
m=10, m=50. The results of the experiments are presented in
the Table 1. As we can see the required numerical effort increases
with the number of random variables and the value of reliability
index. The reported limit exceedance (le.) for B=10.0 and
m =10,50 means that satisfied accuracy of the estimate was not
obtained after the allowed number of simulations.
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Tab. 1.  Algorithm parameters and total number of simulations. Example 1
Tab. 1. Parametry algorytmu i liczba symulacji. Przyktad 1
£=1.0 p=5.0 £=10.0
L 0.3 0.3 0.3
m=2 e, 0.0389 0.0473 0.5527
n 230 884 1912
p 0.5 0.5 0.45
m=10 e, 0.5 0.5 3(')1(;51
360 1375 16% Le.
p 0.5 0.5 0.45
m=50 e, 0.1 0.1 ;)5(;
n 882 2968 38% Le.

Example 2. Nonlinearity of the limit state function and probability
levels

In this example, the limit state function is given by the
following formula:

g =3 X, 5C. 23)
=l

where the random variables X ;, j=1,...,m are independent and

exponentially distributed with the parameter A. After
transformation to the standard normal space, the considered limit
state function becomes highly nonlinear

G, = i%zm:ln(lb(f U )xc. (24)

where U ;o J=1,...,m are standard normal random variables, and

@ is the inverse of the normal cumulative distribution function.
The problem was computed for A =1 and m =20 and different
values of C, which are presented in Table 2.

For negative values of C the limit state function has negative
curvature. Results presented in Tab. 2 shows that the numerical
effort grows rapidly with increasing value of C . It is due to the
fact that when C is increasing, then the distance of the failure
domain from the origin grows making the iteration process longer,
and the important region of the failure domain shrinks causing
estimation of the distribution parameters more difficult. Taking
this into account the presented results can be considered
satisfying.

Tab.2.  Algorithm parameters and total number of simulations. Example 2
Tab. 2. Parametry algorytmu i liczba symulacji. Przykiad 2
C -16.175 -11.077 -8.951 7453 -6.277
Py 0.20 107 10° 10 10°
I 0.841 2.328 3.093 3.722 4.268
p 0.475 0.3 0.3 0.3 0.2
é, 0.313 0.024 0.015 0.01 0.005
— 8505
n 493 668 3014 5512 1.0% Le.
P, 0.20 1.0-107 0.97-10° 0.98-10" 0.97-10°
c 25.90 31.856 36.720 41.050
Py 10" 107 107 10*
A 1.282 2.328 3.093 3.722
p 0.5 0.4 0.3 0.3
é, 0.398 0.0316 0.0562 0.0562
- 8020 13922
" 107 1408 4.0% Le. 13.3% Le.
Py 0.20 1.0-10° 0.97-10° 0.98-10"

If C is positive then the failure surface has positive curvature.
In this case significant mass of the probability is highly spread.
Importance sampling based on unimodal distributions is
ineffective for this class of problems. Results of the experiments
(Tab. 2) show that cross-entropy method is not effective for this
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problems as well. Estimates with assumed accueracy required very
high number of simulations, morever some of the results are
biased. The cross entropy method in implemented form should not
be employed for problems exihibiting similar properties.

Example 3. Noisy limit state function

The limit state function in this example is defined by:

6
g5 = X, +2X, +2X; + X, —5X; - 5X, +0.001) sin(X,), (24)

i=1

where all random variables are independent and log-normally
distributed. Random variables X, X,, X;, X,, have mean values

120.0 and standard deviations 12.0. X, has mean 50.0 and standard
deviation 15.0, and X, has mean 40.0 and standard deviation 12.0.

Probability of failure defined by g; is P, =1.23-107. The last

term in (24) introduces small perturbation, so called noise. The
noisy limit state surface is higly irregular, thus gradient
approximation methods like FOR/SORM have limited use in this
case. For this kind of problems application of the adaptive
simulation algorithms is the default approach. In practice, noise is
present very often, because it occurs not only due to properties of
the problem but also as result of numerical errors. In this example
analysis were performed with the following values of the
algorithm parameters: p=0.4 and e, =0.398. The average number

of simulations necessary for estimation with 10% coefficient of
variation was 710, of which 564 was used for final estimation of
failure probability. Average value of estimated probability of
failure was Pf=1.21~10'2. The number of simulations required for
final estimation is comparable with number 500 which is given in
[3], while the number of 150 simulations required for estimation
of sampling distribution parameters seems acceptable.

7. Conclusion

In the paper the application of the cross-entropy to estimation of
structural failure probability was outlined. The performance of the
algorithm was tested on problems with difficulties typical for
reliability analysis. The obtained results show that if the numerical
effort is considered, the cross-entropy is not an alternative for
importance sampling methods using the design point (compare
with results in (Engelund & Rackwitz (1993)). However, for
problems where the design point cannot be found easily, this
method seems to be a reasonable approach. The numerical effort is
high but still acceptable and it seems that it can be rewarded by
the ease of implementation of the method for a specific problem.

The support of the MNiSzW grant 4 TO7A 002 26 is kindly
acknowledged.
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