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Abstract

Two computational formulations for spectral analysis of linear
superstructures subject to deck motion excitations are presented in the
paper. Finite element equations of motion are decoupled by using the
modal transform from the generalized nodal displacements to a set of the
normal coordinates. Time and maximum responses of the system are
estimated by using alternatively the root-mean-square technique or spectral
density method. Computer implementations of the two approaches are
discussed. Numerical algorithms worked out can be incorporated to fit
into existing finite element codes with no difficulty. Illustrative results
show that the approaches appear to be effectively employed in ship
engineering.
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Analiza widmowa konstrukcji pokladowych
wymuszonych falami morskimi

Streszczenie

W pracy przedstawiono dwa komputerowe sformutowania dla liniowej
analizy widmowej konstrukcji poktadowych, wymuszonych ruchem
poktadu. Uktad réwnan ruchu, opisany w kontekscie elementéw
skonczonych, rozprz¢zono poprzez transformacj¢ modalng z uogélnionych
przemieszczen weztowych do zbioru wspdirzednych — glownych.
Odpowiedzi: czasowa oraz maksymalna zostaty oszacowane alternatywnie
droga $redniej kwadratowej lub metoda gestosci  widmowe;j.
Przedyskutowano implementacje komputerowa obydwdch sformutowan.
Opracowane  algorytmy  numeryczne moga by¢  wygodnie
zaimplementowane w istniejacych pakietach programéw elementéw
skonczonych. Wyniki ilustrujace wykazuja, ze podejscia te moga byé
skutecznie zastosowane w inzynierii okrgtowej.

Slowa kluczowe: analiza widmowa, konstrukcje poktadowe, fale morskie
1. Introduction

Time and spectral methodologies for ship and offshore
structures such as superstructures, deck cranes, etc., have been
extensively discussed in the literature. In almost all the
formulations, however, stress-displacement behaviour or response
maxima are treated in the framework of static systems or dynamic
systems under structural loadings, described de-terministically as
well as stochastically, cf. [1-4]. In contrast to the massive
literature on earthquake problems (onshore systems), cf. [5],
theoretical and practical applications to super-structural structures
subject to deck motion have had little attention. Much essential
work remains to be done, and state-of-the-art software for such
a computational option is rather scarce.

In the context of the finite element setting this study is
a numerical attempt to spectral analysis of superstructures excited
by their rigid-base motion. After a brief description of the
decoupling technique, Sections 2 and 3 deal with the spectral
response and the first two probabilistic moments. Analysis of

maxima is discussed in Section 4. This is followed by two
illustrative examples and concluding remarks, Section 5.

2. Spectrum response

In accordance with the finite element formalism response of
a N-DOF linear structural system subject to base accelerations can
be described by a coupled system of linear ODEs

Mo (7)+ Copp (7)+ Kopdp (7) = =Mpii (7) (D

with the two initial conditions prescribed. In this system q,, @ =1,
2,..., N, is the vector of nodal displacements from the undeformed

configuration, qg the vector of nodal reference (to the rigid-base)

displacements, while the dot and double-dot denote first and
second time derivatives. The symbols M, Copand Kop o, B=1,
2,..., N, indicate the system mass, damping and stiffness matrix,
respectively. The summation convention is applied throughout in
the text.

Equation (1) can be numerically integrated over the time and
frequency domains by using various algorithms, cf. [1-6], out of
which the mode superposition technique is essential in spectral
analysis. Let g, be approximated via the vector of normal (modal)
coordinates x,, p = 1,2,...,V, V << N, as g, = @g,x,(7), where the
time-independent matrix ¢, contains /" mode shapes, each with p
fixed, are solved for from a generalized eigenproblem. Further, by
assuming in the obtained system that the mass-orthonormality and
stiffness-orthogonality conditions are satisfied and the damping
effect are of the Rayleigh type, i.e. it can be expressed as a linear
combination of the system mass stiffness, Cop = aM,z + bKyp a
and b being constants, we arrive at the decoupled system

. . 2 b _
xp+2§pa)pxp+a)pxp—xp, p=12...V ?2)

where a)[z), p=1,2,.,V,is the pth system eigenvalue, being

squares of the natural frequency @, while the p-th modal damping
coefficient reads

z:p:l L i, )

o,

and the p-th modal acceleration of the rigid base is expressed as
-.b ..b
X, :gopaMpaqﬂ , o f=12,..N; p=12,..V )

The modal response x,, () to the problem (2) can be written at
any time 7=1¢ € [0, o) as

xp(t): I:h (l—z’))'éz(r)dr (no sum on p) %)

where the unit-impulse-response function /4(7) is defined as
.. . ) B
h, (T)+2§pwphp (T)+wphp (r)=05(z) (©)

with & 7) being the Dirac-delta distribution. The Fourier transform
of Eq. (5) reads
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fxp (t)e*iw’dt: .[0 |:J.0 hp (t—z'))'é,la’ (T)dz':| ey —
© e b\ iofi-rs ),;L
- .‘-o Io hy (t_r)xp(f)e d(f—T) dr=()

= [y (v) ey [ "3 () e

(no sum on p) with ‘i’ being the imaginary unit. We rewrite Eq. (7)
as

Xp (a)):Hp (a)))(/,l@7 (a)) (no sum on p) ®)

where

X, (z’)e_imdr ,

X, (0)=
X}; (a)): J.:jéz (r)efi“”dr 9)

stand for the spectral nodal displacements and reference
accelerations, respectively, and

H, (a)): J:h/’ (r)efimdf (10)

is the complex-frequency-response function, which is time-
independent. (For nonlinear or non-stationary systems H is
a function of both frequency and time and Egs. (2), (5) and (8) do
not hold true. This aspect, however, goes beyond the scope of the
text.) The inverse transforms of Egs. (9) and (10) give

1 « —ior
xp(r):% 0Xp(a))e do,
- 1 * 5 —ior
xz (T):E . XE (a))e do 1y
and
1 * -0t
hp(T):Z o Hp(a))e @ do (12)

To obtain the explicit expression for the complex-frequency-
response function H, we transform both sides of Eq. (6) as

J:[ﬁp (r)+2§pwp/zp (f)+a)/2)hp (2’)} e dr = J.wé'(z')e’i“”dr =1

0

(13)
By using Eq. (12) yields
3 o L * ior o
hp(r)—la)zn .[o H,(0)e'"do =iwh, () "
7 1 * ior
hp(r)z—a)zgj.o H, (@) do=—0’h, (7)

This implies, cf. Eq.(10)

Hp ()= I: fzp (r)efi“”dr =i(w) I:hp (T)efimdf =ioH, (@)

ﬁp ()= J‘:}.’.p (r)e_i‘”dr =—@? J.: h, (r)e_i"”dr = —wsz (@)
(15)

Substituting Eqs (10) and (15) into Eq. (13) we obtain
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0) . [
Hp(a)): (()'(27 1-[;} +12§pg (16)

which is the complex-frequency-response function for the p-th
mode, and

(S}

(17)

Following the same line as for Eq. (15) the relationships
between spectral displacements and spectral velocities and
accelerations for the p-th mode take the form

Xp (0)=i0X, (@). Xp (a)):—a)sz (@) (18)

Having solved Eq. (8) for the all the mode shapes the total
spectral displacements of the system can be computed
straightforward. According to the definition

0,(w)= j: 4, (7)e"dr a=12,..N (19)

we have, from Egs. (8) and (9),

0,(w)= J: x,(r)e ' "dr =g, I:xp (r)e " dr =
v " (20)
= PapX (@)= Z("apHp (“’)Xp (@)
p=1

and, consequently

s (z’):;—n :Qa (0)e”do, a=12,..N (21

Computationally, to estimate response maxima Eq. (5) has to be
integrated step-by-step over time and the extremum values are
then selected from each time signal sequence of all the dominating
modes. The computations may turn out high-costly. The
approximate method based on [5] and discussed below appears to
be more efficient. We begin with Eq.(1l),,cf.Eq.(8)

1 * ior 1 * > ior
xP(T):Z . Xp(a))e da):g . Hp(a))XZ(a))e do
(22)

(no sum on p) that describes the modal time response obtained by
integration over the frequency domain. It is observed that the only
difference between Eq. (22) and Eq. (11), is the function H, (®)
involved in Eq. (22). Thus, this function can be interpreted as the
influence coefficient of the reaction x,, (7) to harmonic excitation

5&2 (r):XE (w)eim (23)

x,(7)=X (a))ei’” =H (w)XE (w)ei“” (no sum on p) (24)
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In other words, the coefficient X, (w) being the amplitude of the
p-th harmonic component is a measure of the maximum
displacement for the p-th mode. Therefore, for a specific mode the
maximum response can be obtained directly as

x';ax;Xp(a)p):Hp(wp)XZ(wp) (25)

The maximum total response ¢, (7) cannot be evaluated,
however, by merely adding the modal maxima according to the
typical superposition scheme, since these maxima in general do
not occur at the same time. Thus, although the spectral mode
superposition provides information of an upper limit to the total
response, it frequently over-estimates this maximum by
a significant amount.

A number of approaches have been suggested to obtain a more
reasonable estimate of the maximum response from the spectral
responses. The simplest and most popular is that the o-th
displacement and S-th stress maxima are treated as the root-mean-
squares of all the modes of the a-th displacements and S-th
stresses considered in the system. That is, respectively

1

4 2% 2
= S [ e Sereny | e

4
p=1 p=l

3. Response of the first two probabilistic
moments

By the assumption that the base modal excitations 562 (T) are

stationary random variables, the modal reactions x4 z) of the linear
system considered will also be stationary. The expectations for
x,(7) at time 7= ¢ can be expressed as, cf. Eq. (5)

= [ [h )i ()] = [J‘:hp(r))'éZ(t—r)dr}:
= j:hp(r)E[x;(t_r)}dT: [ (e) E[ (1) Jar =
:E[)'c'z(t)} I:hp(r)dr

(no sum on p)

27
since the convolution integral is symmetric in /4, and 56'2 and the

expectations of stationary random variables are constant. Further,
by setting @ = 0 Eq. (10) becomes, cf. Eq. (16)

H,(0)= [, (r)dr=— 28)

E[xp]:%E[xz] (29)
P

S

This equation describes the relation of the p-th spectral
acceleration of the structure base and the p-th spectral
displacement (p-th normal coordinate) of the system. We also note
that the expectations E[x,] ate independent of the damping effects
and may be interpreted as the solution to the corresponding static
problem; excitations typical of inertia forces due to the base
accelerations are treated as static loads according to the well-
known d’Alembert principle.

To compute the second probabilistic moments we write the
Fourier transform pair

J. R, z' e dr
0, 0=12,...V (30)

R, (7)== . S . (0)e do

where Sxpxg (a))and Rxp

X, (T) are respectively the spectral

density functions and correlation functions for two stationary
random variables x,(f) and x.(f), which are in this case two
spectral reactions. The correlation functions, by definition, read

Rxpxa (r) = lim 1 j:xp (t)xo, (t + r)dt (€2))

the symbol 7 denotes from now on the time shift. Because the
Dirac distribution is even we rewrite Eq. (5) for x,(¢) and x(?) as

5 ()= [y ()35 (1=v)av
%, ()= [ o (m) 2 (=)

(nosumon p, o) (32)

which, introduced in Eq. (31), result in

R, (z)=lim T[J’:hp(v)x; (t—v)dv}[j:hn(n)jég (t+2'—7])d77}1t:

T—w J0

<[ o

n)[lim OT i (1-v)ib (t+r—r7)dt}dvd77

(33)

(no sum on p, o) or

[ s

From Eq. (30), it follows that

o)= [ 17 1l
_ [ I: n, (V)e—ia)vdv:}{ J’: h, (q)e‘*“’”dq}

=dr
X R, . (r+v—17) e_lw(r+v_'7)d(r+v—77)
0 *o'e

(z+v—n)dvdy (34)

)R, " (t+v=n)dv dn} Horgr =

(33)

which, on account of Egs. (10) and (30);, becomes

b.
P XX

Sxpx(, (a)) =H (a))H(7 (a))S » ( ) (no sum on p, o) (36)

Specifically, when p =0 we get
(@) (37)

The total second probabilistic moments can be evaluated by
superposition of the obtained above modal quantities. The
correlation function for two displacement components can be
written as, cf. Eq. (31)
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.1 T
Ry, (r)= TIE}O? o 1a (’)qﬂ (t+7)dr=

.1 T
= 0uppo lim — [ 5, (), (1 2)dr = G8)
= ¢Qp¢ﬁo-Rxpxo_ (T)

and, consequently, cf Eq. (30),

Souas (w)= _[0 PapPpoRs x, (T)eiimdr = PapPpoS x, (o)

(39)
4. Analysis of maxima
To this topic we define a non-dimensional random variable
G ()= E[a.(1)]

r, = = (40)

VHo v Ho

with (cf. Eq. (30), written for g, at z=0)

1 0

o =R, (0) =~ [ 815, (@)do 1)

Observing that R; ; (0)=R, , (0)-E[q,]E[qy] the

relationship between S 4ty (a)) and S Guis (a)) takes the form
Sf?aq”/; (a)) = Sq,,q/} (a))—E[qa ]E[qﬁ]5(a)) (42)

0 .
since E[g,] and E[gg] are constant and J. e ' “"do =§(a))
0

with & w) defined here for the finite time interval [0, 7] as, [5]

T/(27z) for o <7/T

5(w)= (43)
0 for w>7n/T

From M independent maxima with the probability density

function p(r,) the cumulative distribution function is defined for
the maxima as

Por (”a ) = Prob (all M maxima <r,)= e (44)
where
T 1/2 1
H - ©
9=_—|2 22 with :_J' @S- - (0)do (45)
27[[#0} ¢ #a 27 Jo quqﬂ( )

The probability density functions pey.(r,) for maxima takes the
form

1/72
pextr(ra)zwzﬁ[&] e&*fj//Z (46)

dr, 27\ o

The expectations and standard deviations for the maxima 75"

can be approximately calculated from Eq. (44) as
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VK "t 47

pa
O or = —F—
T N(YS

where y=0.5772 is the Euler constant.

5. lllustrative examples and concluding
remarks

Two deck cranes, produced by TOWIMOR for the ships B-570
and B-577, modelled as superstructures subject to deck motion are
considered. Input data are defined by the spectra of acceleration
amplitudes and the spectral density functions of ship decks. The
data on input are processed by using the design sea's state method
supplied from CTO. The finite element model for the first crane
consists of 4942 thin-shell elements and 332 3-D beam elements
(22325 DOFs). For the second crane, the finite element setting
includes 2122 thin shell elements and 20 cable elements (16088
DOFs). For both the two systems 30 dominated modal shapes are
used in the spectral analysis and numerical integrations. To
evaluate the relative nodal displacements and accelerations,
element stress response and estimate response maxima both the
approaches based on the root-mean-squares and the spectral
density functions are employed.

It is observed from the obtained numerical results that in
accordance with the design sea's state method the displacement-
acceleration spectra and spectral densities of the crane structures
and those of the ‘design seas’ are respectively different in
a considerable extent. Geometrically interpreting, the common
domain of their spectral density functions is relatively small, being
about 2-4 percent. In view of this, the currently existing supports
of the cranes can safely be removed during the ship's cruise, since
the vibration amplitudes of the deck cranes are small and can be
neglected. For the cases of ship’s swinging and/or swaying with
smaller periods, 1-2 seconds for instance, when comparedwith the
so-called design sea’s state swinging and swaying, i.e. ’shorter’
sea’s waves and consequently ‘faster’ vibrations of the ship's
desks, the time and spectral responses of the deck cranes seem to
be more dangerous and the deck supports may turn out necessarily
needed.

It should be pointed out in ending that the spectral approach,
extensively applied in onshore civil engineering for earthquake
problems, may stand for an alternative methodology in analysis of
offshore travelling units. By the significant difference in the nature
of sea’s waves and earthquake, the problem should be put towards
more thoroughly, though.
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