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Abstract

In the article, simplified representation of convolutive representation is
presented. The arithmetic operators for addition and multiplication were
defined. On the ground of addition and multiplication, the operators for
subtraction and division were educed. The comparison between arithmetic
operators implementation and simplified representation was carried.
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Sprzetowa implementacja reprezentacji
uproszczonej liczb splotowych

Streszczenie

W artykule przestawiono forme¢ uproszczong reprezentacji splotowej
sktadajacej si¢ z dwoch elementdw wartosci $redniej i wariancji.
Zdefiniowano dla niej operatory arytmetyczne dodawania i mnozenia. Na
bazie operatorow dodawania i mnozenia wyprowadzono operatory
odejmowania 1 dzielenia. Przeprowadzono pordéwnanie mozliwosci
implementacji operatorow arytmetycznych liczb rzeczywistych oraz
reprezentacji uproszczonej w uktadzie Xilinx Spartan 3. W poréwnaniu
z liczbami rzeczywistymi implementacja sprzgtowa reprezentacji
splotowej wymaga trzy razy wigcej elementow, przy czym jak wykazata
implementacja iloczynu skalarnego dla réznych wymiardéw przestrzeni,
stosunek ten nie zalezy od liczby koniecznych do przeprowadzenia
obliczen.

Slowa kluczowe: reprezentacja splotowa, liczby splotowe, splot.
1. Introduction

Convolution operator is used in many fileds of knowlegde.
Among other things in operator calculation [1], in differential
equations theory, approximation theory [2], and the like. It has
great importance in statistics as well, where it is used to count the
sum of independent random variables [3]. Connection of the
convolution and random variables is the reason to use the
convolution in fuzzy arithmetic. Mare§ was the first, who brought
to our attention the possibility of using convolution as an addition
operator in fuzzy arithmetic, originally in integral form [5], and
later in sum form [6]. A description of convolution as an addition
operator may also be found in [7, 8].

Mare§ has demonstrated the group properties of convolution
using an equivalence relation. This indicates the existence of
opposite numbers — “reductors”. He also presented a problem with
the definition of multiplication in convolutive representation, in
conformity with the principle of extension, and gave a formula for
alternative multiplication by multiple additions.

Any number in convolutive representation can be described
with the aid of two parameters: average value and variance.
Unfortunately neither of these parameters indicates symmetry of
distribution, which is why we are able to split the variance into the

sum of two parameters characterizing symmetry. These
parameters together with average value will constitute the
simplified representation of convolutive representation.

Simplified represenation, thanks to the limitation of array length
to three elements needed to remember convolutive number,
simplifies the computation a lot. Additionaly, what would be
shown below, it simplifies the way of performing of addition,
subtraction, multiplication and division. Thanks to this property,
the quantity of resources needed to hardware realization reduces in
significant way.

2. Number addition

A normal distribution curve can be described with two

parameters: average value X and variance o . Observing the
behaviour of the average value when adding two numbers in
convolutive representation, we can note that the average value of
resulting number equals the sum of the average values of these
numbers.

This means that we can replace a normally distributed number
by its average value and variance, creating the ordered pair

(X;Uz). The variance can be replaced by two parameters « and f,
with their sum of equal variance: o+ =0’ . This gives us the
ordered triple: (x;a; ). Parameter o determines the value of

variance from the left side, and value g from the right side of
average value.
Addition for this number can be defined as follows:

[(xa;aa; a)+(xb;ah;ﬁh)]5(xa +X,50, ta,; B, +ﬂb) @)

Here X, o and g could be any real numbers. Due to this,
commutativity along with associativity of this operation result
from the commutativity and associativity of real number addition.
The neutral element is (0;0;0), and the inverse element is
(- x;—a,—p). Hence the algebraic structure (+;(-x—a;—f)) is
close to the commutative group.

An ordered triple (x;a; [)’) is a simplified form of convolutive

representation. We can note that in simplified form we may have
ordered triples with the sum of parameters « i f resulting in
a negative value of variance. In convolutive representation given
by Mares this kind of number is absent; however, he demonstrated
their existence. Such numbers could be determined when looking
for opposite elements in accordance with the principles of algebra.

3. Number multiplication

There are two multiplications in convolutive representation as
proposed by Mare§. One is consistent with the extension principle
and the other could be referred to as multiplication by multiple
addition [6]. The first multiplication is not distributive over
addition. Using this multiplication would significantly limit the
possibility to use convolutive representation.

Similarly, we can define the operator of integer numbers
multiplication by fuzzy numbers, as the multiple addition of fuzzy
numbers only. The properties of commutativity and associativity
of such a defined multiplication operator stem from commutativity
and associativity of addition. The neutral element is the value one.
Moreover, multiplication is distributive over addition. The
multiplication operator has, however, one serious limitation. In
a set of integers it is impossible to calculate the inverse element,
although this does not mean that division is impossible.
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Multiplication of numbers through addition can be expressed
also in representation (Tc;a; /)’):

a~(f;a;,8): (Tc;a;ﬁ)+()T;a;ﬁ)+...+(x;a;ﬁ):(ax;aa;aﬁ) 4)

a

where a € Z . Taking into account the form of notation, we can easily
extend the multiplication operation from the set of integer numbers
onto the set of real numbers. This operation can be extended for
multiplication by any number in the representation (X o0 ) :

(xl;aﬁ,gl)'(fz;az;ﬂz): (xliz;zaz X0 —0,0,3%, B, X, B, +ﬁ|ﬁ:) (6)

Multiplication satisfy the following conditions: commutativity,
associavity, neutral element and inverse element.

Algebraic structure containing of set of a ordered triples
(x;a;8) and multiplication operations is a monoid. It can be
observed, that all elements of numbers' set in simplified
representation, except: (0;0;0), (a;a;c), (a;b;—a) and (a;a;—a),
have inverse element. For these numbers assigned inverse element
will contain at least one infinity. For example, the inverse element
for (a;a;—a) will be (l;—oo;ooj.

a

From deliberation above follows that the algebraic structure
consisting of a set of ordered triples (x;a; ,B) and the
multiplication operation is close to an abelian group. Moreover,
the multiplication operator is distributive over addition
a-(b+c): (a~b)+(a-c). As a consequence the set of all ordered

triples ()T;a; ﬁ) with the operations of addition and multiplication
is close to the field.

4. Comparison of hardware implementation
of common arithmetic operators with the
operators in simplified representation

Thanks to the simplification of arithmetic operations it is
possible to realize the addition in the simplified representation by
performing only three additions on fixed point numbers, and the
multiplication by performing seven multiplications, three
additions and one subtraction. These are numbers of operation
which are significantly lower than number of operations necessary
to perform in the convolutive representation, where to addition »’
multiplications and »’- 5 additions are needed, # is the length of
the array of values that describes convolutive number. An
assumption has to be made that the addition can be realized by
using cycle convolution. For example, for n = 5 we have 25
multiplications and 20 additions. But it has to be remarked that »
hardly ever reaches so small values.

To compare the common arithmetic operators with simplified
representation operators the number of NAND gates and flip-
flops, which are necessary to hardware realization of these
operators, was examined.

To achieve this goal Agility Compiler by Celoxica was used.
Compilation was done for Xilinx Spartan 3. The result is shown in
table 1.

Tab. 1. Comparison of number of the elements needed to perform arithmetic operations
Tab. 1. Poréwnanie liczby elementow niezbgdnych dla wykonania dziatan
arytmetycznych

Simplified representation

Fixed point numbers
numbers

No. | Operator

NAND gates | flip flops [ALUs| NAND gates | flip flops | ALUs
1 + 404 36 0 1148 100 0
2 - 404 36 0 1148 100 0
3 * 272 36 1 1280 100 7
4 / 4438 36 0 12670 100 8

To examine the dependencies of the proper number of elements
needed to realize the arithmetic operation in he common operators
and simplified representation operators scalar product of two
vectors was used.

The formula for scalar product is one of the most common in
the methods based on vector calculus. The ratio of NAND gates
number essential to scalar product realization in the convolutive
representation to the NAND gates number necessary to realize the
scalar product for fixed point numbers. The similar ratio was
introduced for the flip-flops and the maximal number of logic
levels between the flip-flops. The result is shown on the figure 2.
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Fig.2. Dependency of ratio of NAND gates, flip-flops and logic levels number
to the space dimension

Rys. 2. Zalezno$¢ stosunku liczby bramek NAND, przerzutnikoéw Flip flop,
oraz liczby poziomow logicznych od wymiaru przestrzeni

The number of NAND gates essential to realize the arithmetic
operations in simplfied representation is only 3,5 times higher.
Similar situation is for flip-flops — this number is 3 times higher.
For the number of logic levels it is less, but bigger oscillation can
be observed.

Such oscillation is caused by the use of optimalization algorithms.
For the space dimensions, which are powers of 2, these algorithms
act 4 times more efficient for fixed point numbers and only 2 times
more efficient for numbers in the convolutive representation.

5. Summary

In the article, the simplified way of notation and performing
arithmetic operations on convolutive numbers was presented.
Thanks to this approach, the number of elements essential to the
realization of computations is multiple lower. In comparison to
real numbers implementation this number does not differ
significantly. The number of elements in this operation is only 4
times higher than number of operations on fixed point numbers.
The compilation of a program which computes the scalar product
of two vectors for Xilinx Spartan 3 was performed.
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