121

PAK vol. 53, nr 7/2007

Pawet MORAWIECKI', Mariusz RAWSKI?

'WYZSZA SZKOLA HANDLOWA W KIELCACH, ZAKEAD INFORMATYKI
2 POLITECHNIKA WARSZAWSKA, ZAKLAD PODSTAW TELEKOMUNIKACJI

Input Variable Partition Method in Functional Decomposition

based on Shannon Expansion

Mgr inz. Pawet MORAWIECKI

Otrzymatl stopien inzyniera w 2003 roku a rok pdzniej
stopie magistra na Wydziale Elektroniki i Technik
Informacyjnych Politechniki Warszawskiej. Obecnie
jest asystentem w Zakladzie Informatyki w Wyzszej
Szkole Handlowej w Kielcach. Jego zainteresowania
naukowe koncentrujg si¢ wokot syntezy logicznej
uktadow cyfrowych, algorytmow i struktur danych,
obliczen kwantowych i logiki rewersyjne;j.

e-mail: pawelm@wsh-kielce.edu.pl

Dr inz. Mariusz RAWSKI

Otrzymal stopien magistra inzyniera na Wydziale
Elektroniki Politechniki Warszawskiej w 1995 roku.
Stopien doktora otrzymal na tym samym wydziale
w 2000 roku. Obecnie jest adiunktem na Wydziale
Elektroniki i Technik Informacyjnych Politechniki
Warszawskiej. Jego zainteresowania naukowe
obejmujg syntez¢ logiczng ukladéw cyfrowych,
narzgdzia CAD dla syntezy i optymalizacji logicznej,
projektowanie systemow cyfrowych z wykorzysta-
niem struktur programowalnych PLD.

e-mail: rawski@tele.pw.edu.pl

Abstract

Functional decomposition has important applications in many fields of
modern engineering and science. The practical usefulness of decomposition-
based methods for very complex systems is restricted by computational
complexity and memory requirements of existing algorithms. Efficiency of
currently used decomposition algorithms is dependent on the size of
decomposed functions. One of the crucial parts of functional decomposition
is the input variable partitioning. In this paper, the “divide-and-conquer”
paradigm is used to propose a new input variable partitioning method. It
has to be stressed that proposed method is not the input variable partition
algorithm itself. It should be treated as a general scheme, method which
can be combined with the algorithms generating input variable partitions
(systematically, heuristically or by algorithms based on BDD).

Keywords: Functional decomposition, Shannon expansion, logic synthesis.

Metoda doboru zmiennych w dekompozycji
funkcjonalnej bazujaca na ekspansji
Shannona

Streszczenie

Dekompozycja funkcjonalna ma zastosowania w wielu dziedzinach
wspotczesnej nauki. W artykule zostaje zaproponowany algorytm, ktory
pozwoli na skrocenie czasu obliczen na etapie doboru zmiennych
w dekompozycji funkcjonalnej. Opisana metoda bazuje na paradygmacie
»~dziel i rzadz”, wykorzystuje ekspansj¢ Shannona. Nalezy podkreslic,
iz zaproponowana metoda nie jest algorytmem doboru zmiennych samym
w sobie. Stanowi ogdlny schemat, ktory moze by¢ wykorzystany wraz
z innymi metodami doboru zmiennych (metoda systematyczna, metody
heurystyczne, metody oparte na drzewach BDD).

Stowa Kkluczowe: Dekompozycja funkcjonalna, ekspansja Shannona,
synteza logiczna.

1. Introduction

Functional decomposition consists of breaking down a complex
system of discrete functions into a network of smaller and
relatively independent co-operating sub-systems in such a way
that the original system’s behaviour is preserved, while some
constrains are satisfied and some objectives are optimised. The
motivation for using functional decomposition in system analysis
and design is to reduce the complexity of the problem by divide-
and-conquer paradigm and to find an appropriate network of
coherent sub-systems: a system is decomposed into a set of
smaller subsystems, such that each of them is easier to analyse,
understand or synthesise.

Although the multi-level functional decomposition gives very
good results in logic synthesis of digital circuits and information
systems, its practical usefulness for very complex systems is

limited by lack of an efficient method for the construction of the
high quality sub-systems. In the sub-system construction process
the following three factors play an extremely important role: an
appropriate input support selection for sub-systems, decision
which (multi-valued) function will be computed by a certain
subsystem and encoding of the subsystem’s function with binary
output variables. Computational complexity and memory
requirements of existing algorithms are strongly dependent on the
size of a decomposed function. Several efficient heuristic methods
have been proposed for decomposition of functions with many
input variables [6, 9]. However, decomposition of complex digital
systems described by large truth tables is still computationally
expensive and requires a large amount of system memory.

A method was proposed in [10] that reduces the computation of
functional decomposition of given Boolean function to
decomposition of its cofactors. The advantage of this concept is
the possibility to expand the original function with Shannon’s
expansion recursively until cofactors have satisfactory size. That
allows the designer to adjust the algorithm to available system
resources.

This paper presents the input variable partitioning method that
uses concept presented in [10]. The decomposed function is split
into sets of its cofactors and the input variable partitioning for one
of the cofactors is evaluated. As the satisfactory partitioning is
found, it is verified with the rest of the cofactors. If it satisfies
decomposition conditions for all the cofactors, the G function can
be constructed. Application of “divide-and-conquer” paradigm,
allows reducing the computation time, as well as system memory
requirements of functional decomposition algorithms for
combinational circuits described by large truth tables.

2. Basic information

Here, only some information that is necessary for an
understanding of this paper is reviewed. More detailed
information concerning blanket algebra and functional
decomposition method can be found in the papers [2, 3, 5].

A. Functional decomposition

Functional decomposition relies on partitioning a switching
function into a network of two smaller and independent co-
operating sub-functions, in such a way that the original system’s
behaviour is preserved.

The set X of function’s input variable is partitioned into two
subsets: free variables U and bound variables V, such that U u V= X.
Assume that the input variables xi,...,x, have been relabelled in
such a way that:

122

U= {xls---rxr}

and
V= {xnfﬁla---rxn} .

Consequently, for an n-tuple x, the first » components are
denoted by x¥, and the last s components, by x”.

Let F be a Boolean function, with » > 0 inputs and m >0
outputs, and let (U, V) be as above. Assume that F is specified by
a set F of the function’s cubes. Let G be a function with s inputs
and p outputs, and let H be a function with » + p inputs and m
outputs. The pair (G, H) represents a serial decomposition of F
with respect to (U, V), if for every minterm b relevant to F, G(b")
is defined, G(b") € {0, 1}, and F(b) = H(b", G(b")). G and H are
called blocks of the decomposition.

Let By, by, and S be blankets induced on the function’s F input
cubes by the input sub-sets V' and U, and outputs of F,
respectively.

Theorem 1. Existence of the serial decomposition [2]

If there exists a blanket £; on F such that £, < £, and Sy ® s < B,
then F has a serial decomposition with respect to (U, V).

In this approach the decomposition process consists of the
following steps:

e an input variable partitioning (the most time consuming part of
the process),

o calculation of partitions Sy, Sy and S,
e construction of partition /g,
e creation of functions H and G.

The input variable partitioning problem is NP-hard since for
optimal solution it is necessary to search through all possibilities and
the search space is exponentially dependent on the size of the
decomposed function. For large functions (input variables number
over 20), a systematic approach is very ineffective. Several efficient
heuristic methods have been proposed that produce solutions of
optimal or near optimal quality [6, 9]. These methods drastically
reduce the number of partitions that have to be checked to find
a solution of satisfactory quality. However, since the time needed to
check one input variable partitioning strongly depends on the size of
the decomposed function (Fig.1), the efficiency of these methods for
functions described by truth tables with large number of rows is
greatly reduced.

The size of the truth table describing a decomposed function
influences not only computation complexity of all decomposition
steps, but has also a large impact on the size of the system
memory required by an application implementing functional
decomposition. This factor plays an important role in the case of
large truth tables.

The importance of this problem is increased by the fact that in
a multilevel decomposition, the decomposition process is applied to
functions H and G repetitively. The process is repeated until each
block can be directly mapped in a logic block of a specific
implementation structure [4].

3. Decomposition of cofactored function

This paper presents the method based on a “divide-and-conquer”
paradigm that decreases the influence of number of rows on the
searching time of efficient partitioning . The method is based on the
application of Shannon’s expansion.

PAK vol. 53, nr 7/2007

Theorem 2. Shannon’s expansion

An arbitrary logic function F(xi,...,x,) can be expanded as
follows:

Fpeeey Xy X7) = X, F X1 0,000y X,) + 2, F(X ey L,)

In the case of functions described by truth tables, Shannon’s
expansion results in replacing a truth table by two truth tables
without variable x; One truth table consists of rows for which
variable x; has value 1 in the original table and the second consists
of rows for which variable x; has value 0 in the original table.

The Shannon’s expansion theorem is useful in the analysis and
synthesis of digital systems. An n-variable function F is replaced
by two (n — 1)-variable functions: F(xi,..., O0,..., x,) and
F(xy,..., 1,..., x,). These functions can be recursively expanded in
similar way resulting in a sum of minterms.

In [10], the concept of decomposing cofactored function is
introduced. This concept is described by the theorem presented
below.

Theorem 3. Decomposition of cofactored function

Let F| and F, be cofactors of function F(xi,...,x,) with respect to
variable x;. If there exists such a function G, so that F; and F, have
decomposition F;=H;(U, G(V)) and F,= HyU, G(V)) respectively,
then function F" has also decomposition F'= H(U U x;, G(V)).

Application of this theorem reduces the process of
decomposition of a function into decomposition of the function’s
cofactors. Instead of decomposing the original function, the
function’s cofactors are decomposed. Function G(¥) found in the
decomposition of cofactors can be used in decomposing the
original function, while functions H(U, G(V)) and H,(U, G(V))
can be used to reconstruct function H in the decomposition of the
original function. Since the cofactors’ truth tables have less rows
than the truth table of the decomposed function (under the best
situation,, each cofactor will have half the number of rows of the
original function) the decomposition process for cofactors can be
performed much more efficiently as regards to computation time,
as well as memory usage.

The advantage of this concept is that the original function can
be expanded recursively with Shannon’s expansion until cofactors
have satisfactory size.

4. Input variable partitioning algorithm

In the approach proposed in [10], the decomposed function is
split into sets of its cofactors. Application of Theorem 3 is
possible only if such a input variable partitioning is computed that
satisfies the decomposition condition from Theorem 1 for all
cofactors. If the proposed variable partitioning does not satisfy the
decomposition conditions for any one of the cofactors, Theorem 3
can not be applied. Thus, to find input variable partitioning that
guarantees the decomposition of a function, it is sufficient to
generate a set of input variable partitioning that satisfies the
decomposition conditions for one cofactor and then remove from
this set any variable partitioning that does not satisfy
decomposition condition for any other cofactor.

In Table 1, the input variable partitioning algorithm that makes
use of Theorem 3 is presented. First, the decomposed function is
expanded into cofactors. Since, according to Theorem 3, variables
used in expansion are fixed into free set U, significantly reducing
the search space, their selection is very important. The selection of
variables for expansion can be aided with r-admissibility concept
[8]. After expanding the decomposed function into cofactors, the
best input variable partitions are computed for one of the
cofactors. For this purpose, the heuristic methods of input variable

123

PAK vol. 53, nr 7/2007

partitioning can be used [6, 9]. In case of small size of cofactors,
the systematic method can be used (checking all the possible
solutions and taking the best ones). Having done this, computed
input variable partitions are verified to check if they satisfy the
decomposition condition for the rest of the cofactors. If not,
variable partition is removed from the set of possible solutions.
After this the set of solutions is found that might give satisfactory
decomposition. The last step of the algorithm is to check each
solution, using Theorem 3 to find input variable partitioning that
allows the construction of a satisfactory decomposition.

Tab. 1. Input variable partitioning algorithm
Tab. 1. Algorytm doboru zmiennych wejsciowych

Input: truth table of function
Output: input variable partitioning (U, V) satisfying Theorem 1
(1) expand function F into cofactors {F, ..., F,,}
(2) for any cofactor F; find set S of the pairs (U, V) satisfying Theorem 1
(3) for each pair (U, V) from set S do
(3.1) for each cofactor different than F; do
(3.1.1) if pair (U, V) doesn’t satisfy Theorem 1
(3.1.1.1)
(3.1.1.2) break

4) for each pair (U, V) from set S do
(4.1) if pair (U, V) satisfy Theorem 3 return pair (U, V)

remove pair (U, V) from set S

A solution quality depends on the size of S set. The more (U,V)
pairs are checked, the higher probability of finding the better
solution. The good solution means that is satisfies Theorem 3 and
produces a small number of outputs from a G function.

The presented algorithm can be also combined with BDD
(Binary Decision Diagrams) methods. In general, the calculations
would be performed on smaller subtrees and consequently the
time and memory usage can be reduced. More detailed description
exceeds the subject of this paper.

In the Table 2 some results are presented. Since it is mainly
a theoretical paper only a few examples are presented. The authors
plan to make more extensive and detailed tests.

The Table 1 describes a cofactor-based method. Here the
cofactors size was set to not more thane 2048 rows.

Tab. 2. Input variable partition search - comparison [s]
Tab. 2. Metody doboru zmiennych wej$ciowych - pordwnanie[s]

Example Systematic Search Cofactor-based method
Bin2BCD 134 63
SQR_13 649 243
Const_97 637 257
Apex3_3 24578 12783
Apex3_7 174889 104910
> 200887 188256
[%] 100 58,9

5. Conclusions

Efficiency of currently used decomposition methods is heavily
dependent on the size of decomposed functions. Decomposition of
combinational circuits described by truth tables with great number

of rows is computationally expensive and requires large amount of
system memory.

The most time consuming part of the decomposition process is
the selection of input variable partitioning that guarantees good
quality decomposition. The method described in this paper applies
the “divide-and-conquer” paradigm in the form of Shannon’s
expansion to split the decomposed function into a set of its
cofactors and computes decomposition for each cofactor
separately. It is designed to help handling big functions. The
method should be treated as a general scheme which can
combined with other algorithms producing input variables
partitions.

It has to be stressed that the very important advantage of this
concept is the possibility to expand the original function with
Shannon’s expansion recursively until cofactors have satisfactory
size. That allows the designer to adjust the algorithm to available
system resources.

6. References

[1] M. Burns, M. Perkowski, L. Jézwiak, “An Efficient Approach to
Decomposition of Multi-Output Boolean Functions with Large Set of
Bound Variables”, Proc. Of EUROMICRO’98 Conference, Vasteras,
Sweden, 1998

[2] J. A. Brzozowski, and T. Luba, “Decomposition of Boolean Functions
Specified by Cubes”, Journal of Multiple-Valued Logic and Soft
Computing, Vol. 9, Old City Publishing, Inc., Philadelphia, 2003, pp.
377-417.

[3] T. Luba, H. Selvaraj, “A General Approach to Boolean Function
Decomposition and its Applications in FPGA-based Synthesis”, VLSI
Design, Special Issue on Decompositions in VLSI Design, vol. 3,
Nos. 3-4, 1995, pp. 289-300.

[4] T. Luba, H. Selvaraj, M. Nowicka, A. Krasniewski, ‘“Balanced
multilevel decomposition and its applications in FPGA-based
synthesis”, In: Logic and Architecture Synthesis (G.Saucier,
AMignotte ed.), Chapman&Hall, 1995.

[5] M. Nowicka, T. Luba, and. M. Rawski, “FPGA-Based Decomposition
of Boolean Functions. Algorithms and Implementation”, Proc. of
Sixth International Conference on Advanced Computer Systems,
Szczecin, 1999, pp. 502-509.

[6] M. Rawski, L. J6zwiak, and T. Luba, ,,Functional Decomposition with
an Efficient Input Support Selection for Sub-functions Based on
Information Relationship Measures”, Journal of Systems Architecture
47,2001, 2001, pp. 137-155.

[71 M. Rawski, L. Jézwiak, M. Nowicka, T. Luba, “ Non-Disjoint
Decomposition of Boolean Functions and Its Application in FPGA-
oriented Technology Mapping, Proc. of the EUROMICRO’97
Conference, Budapest, Hungary, Sept. 1-4, 1997, pp.24-30, IEEE
Computer Society Press.

[8] M. Rawski, H. Selvaraj, T. Luba, “An application of functional
decomposition in ROM-based FSM implementation in FPGA
devices”, Journal of Systems Architecture, Vol.51(2005), ELSEVIER,
2005, pp.424-434..

[9]1 M. Rawski, H. Selvaraj, P. Morawiecki, “Efficient Method of Input
Variable Partitioning in Functional Decomposition Based on
Evolutionary Algorithms”, Proc. of EUROMICRO Symposium on
Digital System Design’04, Rennes, France, 2004, pp. 136 - 143.

[10]M. Rawski, P. Morawiecki, H. Selvaraj, “Decomposition of
Combinational Circuits Described by Large Truth Tables”,
Proceedings of Eighteenth International Conference on Systems
Engineering, Coventry, United Kingdom, September 5-7 2006, pp.
401 - 406.

Artykul recenzowany

