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Abstract

An overview of the differential and algebraic Lyapunov, Sylvester and
Riccati equations is presented. A special attentions is focused on
relationship between the equations and their applications in control
systems theory. The well-known classical Cayley-Hammilton theorem is
extended for the Lyapunov time-varying systems.
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Réwnania Lapunowa, Sylvestera
i Riccatiego oraz ich niektére zastosowania

Streszczenie

W pracy podano przeglad rozniczkowych i algebraicznych réwnan
Lapunowa, Sylvestera i Riccatiego. Szczegolna uwage zwrdcono na
zwiazki ~ wystgpujace  miedzy tymi  rdwnaniami  oraz  ich
zastosowaniami w teorii sterowania i systemow. Uogdlniono klasyczne
twierdzenie Cayleya - Hamiltona na uklady Lapunowa o zmiennych
w czasie parametrach.

Slowa kluczowe: algebraiczne, rdézniczkowe, roéwnanie ,Lapunowa,
Sylvestera, Riccatiego, rozwiazanie, zastosowanie.

1. Introduction

The Lyapunov stability theory for continuous-time and discrete-
time systems is well known for many years [2, 4, 8]. The theory is
based on the algebraic Lyapunov equation which has originated
the linear matrix inequalities (LMI) approach. The equation is also
used in computation of the controllability and observability
Gremmians and the H,-norm of the transfer matrix of the linear
system.

The differential and algebraic Sylvester equations play also
important roles in control systems theory. It will be shown that the
differential Sylvester equation is the starting point for
development of the linear continuous-time Lyapunov systems. The
algebraic Sylvester equation is used in designing of the
Luenberger state observers of linear continuous systems. It is well-
known that the differential and algebraic Riccati equations play
crucial roles in the optimal control of linear time-varying and
time-invariant systems with quadratic performance indices (cost
functions).

In this paper an overview of the Lyapunov, Sylvester and
Riccati equations will be presented. A special attention will be
focused on the relationship between the equations and their
applications in control systems theory. The well-known classical
Cayley-Hamilton theorem will be extended for the Lyapunov
tame-varying systems.

2. Lyapunov equations
Consider the continuous-time linear systems

X = Ax+ Bu
= 2.1)
where xe R", ue R" and yeR” are the state, input and output
vectors and 4 R™", Be R™, CeR™.
The system (1) (or equivalently the pair (4,B)) is controllable
if and only if
rank| B AB A7B]=n (2.2)

The system (1) (or equivalently the pair (4,C)) is observable if

and only if
C
CA
rank . =n 2.3)

c4™
Definition 2.1. The matrix equations
XA+A"X =0, AeR™, XeR™, QeR™ (2.4a)

and
AX + XA" =—Q (2.4b)

are called the Lyapunov equations.

Theorem 2.1. Let 4 be a asymptotically stable matrix and let
O be symmetric, positive definite or semidefinite. Then the

unique solution X of (4a) is given by

X= '[eAV’QeA’dt (T-denotes the transpose)  (2.5a)
0

and the unique solution X of (4b) is given by

X= '[e/“QeAT’dt

0

(T'-denotes the transpose)  (2.5b)

Theorem 2.2. Let X be the solution of the Lyapunov equation (6)
X4+4"x=-C"C (2.6)
Then the followings hold:

1. If X is a symmetric positive definite matrix and the pair (4,C)

is observable then A is an asymptotically stable matrix
2.1f A4 is an asymptotically stable matrix and pair (4,C) is

observable then X is a symmetric positive definite matrix
3.1If 4 is an asymptotically stable matrix and X is a symmetric
positive definite matrix then the pair (4,C) is observable.

Dual results we have for a controllable pair (4, B) satisfying the
condition (2).
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Theorem 2.3. Let X be a solution of the Lyapunov equation
AX + XA" =—-BB" 2.7)
Then the followings hold:

1. If X is a symmetric positive definite matrix and the pair (4, B)

is controllable then 4 is an asymptotically stable matrix
2.1f A is an asymptotically stable matrix and the pair (4,B) is

controllable then X is a symmetric positive definite matrix
3.1f A4 is an asymptotically stable matrix and X is a symmetric
positive definite matrix then the pair (4, B) is controllable.

Definition 2.2. Let 4 € R™" be a state matrix. Then the matrix

G.= jeA'BBTeA”dz (2.8)

0

is called the controllability Grammian and the matrix

G, = feA”C’ceA’dz (2.9)

0
Is called the observabiliy Grammian.

Theorem 2.4. Let 4 be an asymptotically stable matrix. Then
the controllability Grammian (8) satisfies the Lyapunov equation

AG.+G.A" =-BB" (2.10)

and is a symmetric positive definite if and only if the pair is
controllable.
The observability Grammian G, satisfies the Lyapunov

equation
G,A+A"G,=-C"C (2.11)

and is symmetric positive definite if and only if the pair (4,C) is
observable.

Using the controllability Grammian (8) or the observability
Grammian (9) we can compute the H,-norm of the transfer

matrix of asymptotically state system (1) by solving the Lyapunov
equation (10) or (11) and computing either trace (CGCCT ) or trace

(B"G,B) [2,5].

Similar results can be obtained for discrete-time linear systems
[2, 11].
3. Sylvester equations
3.1. Differential equations

Consider the differential time-varying Sylvester equation

X (1)=AX (1)+ X (1) B(1)+C (1) 3.1)

with the initial condition

X(t,)=X, (3.2)

where A(t), B(t), C(¢f), X(¢f) are continuous-time nxn

matrices and 7, is a given initial instant.

Theorem 3.1. The unique solution of (1) satisfying the initial
condition (2) has the form
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X ()= X, (0 XX, (045, (0)] [X7(£)C(2) X5 (el | %, (1) (3.3)

where X, (¢) and X, (¢) are solutions of the equations

X, (1)=A() X, (1) with X,(1,)=1 (3.42)

n

X,(1)=X,(¢)B(¢) with X,(t,)

I (3.4b)

n

Proof'is given in [4].
The Sylvester equation (1) is closely related with Lyapunov
systems described by the equations

X(t)=4, ()X (1)+ X (1) 4 ()+B(1)U(¢) (3.52)
Y(t)=C(t) X (¢)+D(1)U(r) (3.5b)

where X (1) isan nxn state matrix, U (¢) isan mxn input matrix,

Y(t) is a pxn output matrix and 4,(7),4,(t),B(t),C(t),D(r)

are continuous-time real matrices with appropriate dimensions.
Applying Theorem 1 to (5a) we obtain the following.

Theorem 3.2. The solution of (5a) satisfying the initial
condition X (7,)= X, has the form

X (1) =, (1,4,) X, @, (1,1)+ D, (1,1, rI(D(to’T)B(T)U(T)q)z(T’to)dr @, (t,1)
U 3.6)

where @, (1,4,) =X, (1) X" (¢,), @, (15,1)=X;"(¢,) X, (r) and
X,(¢),X, (1) are solution of the equations

with X, (7,)=1,
with X, (7,)=1

n

X, (1) =4, (1) X, (1) (3.7)

Xa (1) =X, (1) 4 ()

In [11] necessary and sufficient conditions for controllability
and observability of the Lyapunov systems are established. We
shall show that the classical Cayley-Hamilton theorem can be
extended for the Lyapunov systems.

The Kronecker product 4 ® B of matrices 4= [a,.j] e R™" and
B e R” is by definition the block matrix [4]

A®B=[a,B]., ,eR"" (3.8)

Using (8) for (5a) we may define the matrix

A(t)=4,(1)®1,+1,@ AT (t)e R™™ (7 =n") (T denotes the transpose)
(3.9)

and its characteristic polynomial
pi(4)= det[lﬁﬂ - Z(t)] =s"+a,_ 5" +..+a,/(t) A +a,(t) (3.10)

Theorem 3.3. Let 4(t)=4,(¢)+4(¢) and p,(4)=det[I,A-4].
If
[,@A ()= 4, (1)®1 (.11

n

then
Pz (/l)z(pA (/1))” (3.12)
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and
P (A(r))=0 for k=0,1,...n-1 (3.13)

where

d*p- (A
pg>(g):#() for k=12,.,n-1

Proof. If (11) holds then
A(t)=4,(1)®I,+1, @ A (1)=(4,(t)+ 4,(1))®1,=A4(1)®1, (3.14)

and
Py (A)=det[ IA—A(1)]=det[(1,A- 4(1))®1, | =

n ) (3.15)
=(det[7,4-4(1)])" =(p,(4))

since det[4® B]=(det A)" (detB)" for 4,B e R™" [4].
From Cayley-Hamilton theorem applied to the matrix A(7) [4]
we have p,(4(¢))=0 and from (12) we obtain

Pa(A()=(pa(4())) (3.16)
The equality (16) implies (13).

Remark 3.1 It is easy to show that the condition (11) is met if
and only if the matrix 4, (7) is a scalar matrix, i.e., 4, (¢)=a(t)1,,
a(t) #0.

Example 3.1. For the matrices

AO(:){O _;} A](t):{eor Ol} (3.17)

the condition (11) is satisfied since

e’ 0 1 0
0 " 01
I,®4 (1) =4(1)®1, = 0 0 0
0 t 0 0

In this case the characteristic polynomial p, (l) and p; (/7.) have

pi(A)=det[1,A-4(1)]= -+ 2

A-e' 0 -1 0
0 A-e' 0 -1
—t 0 4 0
0 -+ 0
=2t =202 (e = 2) 22 + 2 At

A—et -1
‘ ¢ ‘:lz—e"lt

pa(A)=det[ 1,2~ 4(1)]= =(22—e'at) = (3.18)

Using (13) and (18) and taking into account that

e’ 1 e+t e’ e 2 e+t
O A O A PR N

te™ te + 1 te
—41 -2t 2 -3t —t

. e +3te™ +t7 e +2te

A (1) = { }

te” + 2% te? +1

we obtain

m(A(r)):u(z)f—e"A(r)—ﬂz{";J’ }{ (ﬂ-f[é ?Hﬁ 3}

pa(A(1)=(4()) ~2¢7 (A(1)) +(e™ —20)(A(1)) +20e" A(e) 471, =

e +3te +10 e + 21 26 e +2e e+t +( L 2,) e+t e’ .
- _2¢ i e =
te™ +21%” te +1 te? +1* te”! e’ ot

{c 1} 2[1 0} {0 0}

+2te +1 =

0 o 1] ]oo

P A()=4(4(0)) —6¢7 (A(r)) +2(e™ ~20) A(e) + 2071, =

:4[63';21{’ e’z’7+t:|_6e,,[e’z'i+t e":|+2(e,2,_2t){e” 1}2[«3’{1 O}:[O 0}

e +1 te™ te™! t t 0 01 0 0

Remark 3.2. Let o, (0;) be the spectrum of the matrix

A(A).1f o, c o, then p;(2)=p,(4)p(2) and p;(4)=0.

In [6, 7] the considerations have been extended for positive
discrete-time and continuous-time Lyapunov systems.

3.2. Algebraic equations
Consider the algebraic Sylvester equation
XA+BX =C (3.19)

where 4e R™, Be R™™, Ce R™" are given and X € R™" is
unknown. The Lyapunov equation (4a) is a particular case of the
Sylvester equation (19) for B= 4" and C=-Q.

Theorem 3.4. Let 4,...,1, be the eigenvalues of the matrix 4,
and g,...,u, be the eigenvalues of the matrix B. Then the

Sylvester equation (19) has a unique solution X if and only if
A+u;#0 fori=1,..,nand j=1,..m.

Using the Kronecker product we may reduce the Sylvester
equation (19) to the equivalent one

Px=c (3.20)
where

P=1®B+A ®I,cR"™"
x=[X, X, .. X,]eR™, c=[C, C, .. C,]JeR™
and X, (C,) is the ith (i =1,...,m) row of the matrix X (C)

From (20) it follows that the equation (19) has a unique solution
if and only if 4 and —B do not have a common eigenvalue.

In particular case the Lyapunov equation (4a) has a unique
solution if and only if 4 and -4 do not have a common
eigenvalue.

Following [2] we shall apply the Sylvester equation (19) to
design he Lyapunov state observer

z(t)=Fz(1)+Gu(1)+ Hy(1) (3.21)
of the continuous-time systems

x(t)=Ax(t)+ Bu(t
(1)= as(e)+ Bu(1) )
»(1)=Cx(1)
where 4 R™, Be R™", C e R”" are given u(1)eR", y(t)eR”
are the known input and output vectors,
FeR™,GeR"™, HeR"™ are unknown and xeR", ze R"

are the state vectors of the system and of the observer.
Knowing 4,B,C u(t) and y(¢) find F,G,H and nonsingular

matrix X € R™ in such a way that the error vector
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e(t)=z(t)— Xx(t) >0

for all x(0),z(0) and for every u(z).
The vector z(¢) is an estimate of Xx(7).

It is easy to show that the system (21) is a state observer of the
system (22) if the following conditions are met.

XA-FX =HC (3.23)
G=XB (3.24)

and F is asymptotically stable.
Definition 3.1. The matrix equation (23) is called the Sylvester

observer equation.
The Luenberger state observatory (31) exists for the system (22)

if the pare (4,C) is observable. The observer can be compute via

Sylvester-observer equation (23) by the us of the following two
step procedure.

Procedure 3.1.
Step 1: Choose an asymptotically stable matrix F and a matrix H
in such a way that the solution X of (23) is nonsingular
Step 2: Compute G = XB.

4. Riccati equations
4.1. Differential equations
Consider differential time-varying Riccati equation
X()=X (1) 4, (t)+ A, (1) X (1) + X (1) A, (1) + 4, (1) (4.1)
with the initial condition
X(t,)=X, (4.2)

where X (1),4,(t),4,(t),4,(¢), 4, (1) are continuous-time
nxn matrices and #, is a given initial condition. Note that from
(1) for Ay, (1)=A(t), A4,(1)=B(t), A4, (t)=C() and 4, (1)=0
we obtain the differential Sylvester equation (3.1).

Theorem 4.1. The solution of (1) satisfying the initial condition
(2) has the form

X(0)= %)% (1) “3)

where Y| (¢) and Y, (1) are solutions of the equation

Pl o) e
with the initial condition
Er
Proof is given in [4].

Let
(D]] 200 q)]Z 200
(I)(t,[o):|:q) (t 14 ) Et t ):| (46)
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Be the fundamental matrix of (4). Then the solution of (1)
satisfying the initial condition (3) is given by

X (1)=[@,, (1,8,)+ @, (1,,) ][ Dy, (1,1, + Dy (11,) X, | (4.7)

In particular case the differential time-varying Riccati equation
has the form

X()=X(t)+ 4, + A, X (1)+ X (1) 4, X (t)+ 4,  (48)

and its solution is given by (7) and the fundamental matrix (6) can
be found using the formula

|:q)11(t>to) q)lz(tvto:| eA(H(,) (4.9)
, (1,1,) @, (1.1, '
where
-4, —-A
A{ ! ‘2} (4.10)
AZI A22

For computation of (9) the well-known [4] Sylvester formula
can be used.

It is well-known [2, 8, 11] that he differential Riccati equations
used in the optimal control of linear time-varying systems with
quadratic performance indices. In particular case for time-
invariant linear systems we obtain the Riccati equation (8).

Consider the linear time-varying system

#(1) = A(t)x(1)+ B(r)u(t) @.11)

with the initial condition
x(1,)=x, (4.12)

where x(f)€R” is the state vector and u(f)eR" is the input

vector.
Let the quadratic performance index (cost function) have the
form

I :%xr(tf)Qx(z‘f)+% ][xT(Z)R, (£)x(t)+u" ()R(t)u(r)]dr (4.13)

1

where Qe R™ is a positive semidefinite constant matrix,
R(1)eR™ is a positive semidefinite time-varying matrix,
R(t) € R™" is a positive definite time-varying matrix and 7, and
t, are the given initial and final time instants.

It is well-known [8] that the optimal input L?(t) minimizing the
performance index (13) is given by

u(1)=R"(t)B" (1) P(t)x(¢) (4.14)
and the matrix P(¢) satisfies the Riccati equation

P(t)==P(1)A(t)= 4" (1) P(1)=P(1) B(t) R (1) B" (1) P(1) + R (1)
(4.15)
with the final condition P(t f) =-Q

4.2. Algebraic equations

If 4,(t1)=4, 4,(t)=4", 4,(t)= 4, and X (¢)=0 then from

the differential equation (1) we obtain the following algebraic
Riccati equation
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XA+ A" X + X4,X + 4,, =0 (4.16)

where AeR"™, A4,€R"™, 4, €R™ and X eR™ are time-

invariant (constant) matrices.
From (16) for 4, =0 and 4,, =0 we obtain the Lyapunov

equation (2.4a). with the Riccati equation (16) we may associated
the following Hamiltonian matrix

A -4
H= o 4.17)
-4, -4

It is well-known [2, 8] that for each eigenvalues A of (17), -1
is also an eigenvalue of the matrix with the same geometric and
algebraic multiplicity, where 1 denotes the conjugate eigenvalue.

Theorem 4.4 [2] A matrix X is a solution of the equation (16)

. . 1 . . . .
if and only if the columns of {X} span an n-dimensional invariant
subspace of the matrix (17).

The algebraic Riccati equation is closely related to the
following continuous-time linear quadratic regulator (LQR)

problem.
Consider the linear system

x=Ax+Bu, xeR", ueR", x(O)sz (4.18)

and the quadratic performance index (cost function)
1(x)= [[x () Qx(r)+u" (¢) Ru(t) Jde (4.19)
0

where O € R™" is symmetric positive semidefinite and R € R™"
is symmetric positive definite.
Given matrix 4,B,Q,R find an input u(f) such that the

performance index (19) is minimized, subject to (18).
The pair (4, B) is stabilizable if and only if
rank[I,s—A B]=n forallseC, Res>0

and the pair (4,Q) is detectable if and only if
Is—A
rank 0 =n forallseC, Res>0

where C is the field of complex numbers.

Theorem 4.5 [2] The pair (4,B) be stabilizable and the pair
(4,0) be detectable. Then the exists a unique optimal input #7)

which minimizes (19). The optimal input is given by
u(t)=R"B" Xx(r) (4.20)
and X is the unique positive semidefinite solution of the equation
XA+ A" X -XBR'B"X+0=0 (4.21)

Furthermore, the close-loop matrix 4—BK is asymptotically
stable and the minimum value of (19) is equal to x Xx,.

Theorem 4.6 [2, 10] The equation (21) has a unique symmetric
positive semidefinite solution X if and only if the pair (4,B) is

stabilizable and the associated Hamiltonian matrix

A -BR'BT
H=
-0 iy

has no pure imaginary eigenvalues.
The algebraic Riccati equations play also important role in
state-space solution of /_ and in robust control problem.

In the literature [2] there exist many computational methods for
solving the algebraic Riccati equations, for example, the
eigenvector methods, the Schur methods, the inverse-free
generalized methods, the Newton’s methods, the matrix sign
function methods, etc.

An interesting comparison of the computational method is
given in [2].

5. Concluding remarks

An overview of the Lyapunov, Sylvester and Riccati equations
has been presented. A special attention has been focused on the
relationship between the equations and their applications in
control systems theory. It has been shown that the differential
Sylvester equation plies the crucial role in the development of the
theory of the Lyapunov systems. The well-known classical
Cayley-Hamilton theorem has been extended for the linear time-
varying Lyapunov systems. In this paper the linear continuous-
time systems has been only considered. With slight modification
the considerations can be also extended for discrete-time linear
systems.
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