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Abstract

An effective method is proposed for robust predictive control of nonlinear
processes that is easily implementable on commonly used equipment, such
as PLC and PAC. The method is based on a two-loop model following
control (MFC) system containing a nominal model of the controlled plant
and two controllers: the nonlinear, suboptimal fuzzy predictive one as the
main controller and the proposed robust controller as an auxiliary one. In
the paper ways of employing Takagi-Sugeno fuzzy models to synthesize
Model Predictive Control with State equations (MPCS) for nonlinear
processes and basic features exhibited by the MFC structure are presented.
The resulting controller has been incorporated into the MFC structure, and
then a method for synthesizing the auxiliary controller has been given. The
proposed control structure has been tested for its performance on control
plants with perturbed parameters. Results of tests lend support to the view
that the proposed control method may find wide application to robust
control of nonlinear plants with time-varying parameters.

Keywords: Robustness, Model Predictive Control, Model Following
Control, Fuzzy control.

Odporny uktad rozmytej regulacji
predykcyjnej

Streszczenie

W artykule zaproponowano efektywng metode odpornej regulacji
predykcyjnej  procesOw  nieliniowych, tatwa do implementacji
w powszechnie stosowanym komputerowym sprzgcie automatyki takim
jak sterowniki PLC oraz PAC. Metoda wykorzystuje dwupetlowy uktad
sterowania ze §ledzeniem modelu (ang. Model Following Control — MFC)
zawierajacy model nominalnego nieliniowego obiektu oraz dwa
regulatory: gltéwny — nieliniowy, suboptymalny predykcyjny regulator
rozmyty oraz proponowany odporny regulator pomocniczy. Pokazano
sposOb  wykorzystania do budowy regulatora glownego obiektow
nieliniowych rozmytych modeli Takagi-Sugeno w przestrzeni stanu oraz
podstawowe zalety struktury MFC. Przedstawiono sposob syntezy
regulatora pomocniczego. Proponowana struktura zostata przetestowana ze
wzgledu na jakos¢ regulacji obiektow perturbowanych. Wyniki badan
pokazuja, ze moze ona znalezé zastosowanie do odpornej regulacji
obiektéw nieliniowych o parametrach zmiennych w czasie.

Stowa Kkluczowe: odpornosé, regulacja predykcyjna, regulacja ze
$§ledzeniem modelu, regulacja rozmyta.

1. Introduction

Model Predictive Control (MPC) belongs to the category of the
so-called advanced control techniques, and has been employed
with advantage for over 20 years to control complicated
manufacturing processes that are difficult to govern by classic
controllers [1, 2, 3, 4]. I recent years numerous attempts, both
theoretical and practical, to develop predictive control techniques
that would be effective for nonlinear processes [5, 6, 7, 8].
Unfortunately, synthesis of Nonlinear Model Predictive Control
(NMPC) algorithms, leads in general to a very complicated
problem of nonlinear programming, which is unconvex in most

cases. In order to find the current control here, the problem is to be
solved at each sampling step. The numerical complexity of this
approach is particularly inconvenient if we have to do with fast
processes and those that are multi-input and multi-output.
Effective methods that would ensure obtaining optimal solutions
in a finite time are still lacking [1, 9]. Also, the choice of adequate
nonlinear process models and their parameterization in industrial
conditions in terms of needs of an NMPC controller presents
a great problem. This is true for both phenomenological models
that are mostly very expensive and lead to overly complicated
analytical relationships, and empirical models that require
determining their structure, testing signals and ways of their
identification in real industrial conditions [4, 5].

Therefore, despite the great progress in analysis and synthesis
of nonlinear predictive control made over the past years [6, 7],
suboptimal methods still present the majority of proposed
solutions [9], exemplified by approaches based on employing soft
computing methods. Extensive use in NMPC algorithms is made of
models based on artificial neural networks [1, 10] and nonlinear
fuzzy models, among others Takagi-Sugeno models [11, 12, 13, 14].

Despite many remarkable theoretical achievements in analysis
of nonlinear predictive control and first attempts to employ NMPC
algorithms in industry, a number of problems still remain to be
solved. Among them, realization of nonlinear predictive
algorithms that would be robust to uncertainties and perturbations
of the process structure and parameters unavoidable in industrial
practice, and to the process-model mismatch seems to be the
greatest.

In the paper a universal, robust and easy-to-realization
predictive control method for nonlinear processes is proposed. Its
idea consists in incorporating the suboptimal MPCS algorithm
with Takagi-Sugeno controllers map into the robust MFC
structure.

2. MPCS algorithm for nonlinear processes

First predictive control algorithms were developed for process
models given in the form of discrete impulse and step responses or
discrete transfer functions [2, 3, 9]. Later in the early 1990s,
papers appeared where the process model in the form of discrete
state and output equations has been used [15, 16, 17].

To employ the MPCS algorithm for nonlinear processes it is
assumed in the paper that nonlinear time-invariant (NLTI)
processes may be described by state and output equations, the
structure of which is typical for linear systems with the difference
that state, input and output matrices are dependent on the current
value of the state vector and/or input vector. As it was shown in
[S, 8], the approach where the NLTI model is replaced by a linear
time-variant (LTV) one is possible for the majority of nonlinear
time-invariant processes, notwithstanding the fact that the choice
of the matrix variability is generally still an open problem.
General remarks and recommendations on this point may be
found, for example, in [19].

Among infinitely many possible transforms, one of the most
computationally effective, it appears, is the method of Takagi-
Sugeno fuzzy models presented originally in [9, 14]. Here, the
following antecedent is adopted for the i-th from among p fuzzy
rules

IF x,(k)cS;, AND---ANDx, (k) S, , @))]

where x;(k) =S, ; is the membership of the state variable x;(k) in
the fuzzy set S ; with the membership function s . (xj (k)), AND

is the fuzzy logical product operator, n is the number of state
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variables, and i is the number of fuzzy sets for the variable in
question.

The consequents have the so-called functional form and
correspond to local linear models of the following structure

THEN x,(k+1) = A, x(k) +B,u(k)
v, (k) =C,x(k) )

where x(k) e R™, u(k)e R™, y(k)e R™" are state, input and
output vectors, respectively. It can be shown that after inferencing
and defuzzyficating by the gravity center method the following

relationships for the state and output of the nonlinear model hold
true [10, 13]

Zplw,(k)-g,(kﬂ)

xlk+1) =
S

M*:

W,(k)-x,(k+1) = Zw (k) -[A, x(k)+B,u(k)] (3)

M-

w,(k)-y,(k+1)

i

kD)= = YKy () = (0 -Cx k) (4)

Swn

where weighting coefficients that designate the so-called degrees
of activation of individual rules are determined by the adopted
definition of the fuzzy logical product operator [14], for example,
that given by Zadeh

w, () = min { g (6,0 g, (e, (), g (x,(0))f (5)

In such a case, the nonlinear time-invariant process may be
described by a quasi-linear time-variant model with time-varying
matrices “adjusted” in a fuzzy manner

x(k+1)= A, x(k)+B, u(k)

®)
(k) =C, x(k)
with
A, = A(x(h), u(k)) :2%(/() A,
Blx(h). u(k)) =i *)B, ™

=C(x(k), u(k))=> W,(k)-C,

following from (3) and (4).

Synthesis of the MPCS algorithm for a nonlinear process
represented by the model (6) amounts to designing a linear MPCS
controller defined by

AU, (k)= [EIME, +L)'EM]y" (k) - Y (k) ®)

for each k-th local submodel (2). Here M and L denote matrices of
weighting coefficients, Y, (k) is the reference trajectory vector

within the prediction horizon, E; is the so-called process dynamics
matrix defined by

Ny+p-g-1 Jj
Ek _ |CH,{ & L Ak7]+1JBA7]+q for N! +p7q71 >0} (9)
).

0 for Ny +p-g-1<0 2 o]
& S

and )_’Z(k) is the free component vector within the prediction
horizon with prediction dependent on known future control signals

N N J
0 HAku HAHﬂ‘

i=0 J=0 =

. : . / B, u(k-1) | (10)
0 Ck+s\‘z HAk+i HAk—m

i=0 Jj=0 i=1

The designed local controllers form the so-called controllers
map. Employing them as functional consequents for antecedents
(1) yields an analytical Fuzzy Model Predictive Controller
FMPCS [9, 12]. Its structure is similar to that of the linear MPCS
algorithm, and only the values of gain coefficients are LTV, being
fuzzy weighted sums of local controllers gains. In this way
a system stability analysis with such a model in the nominal case
is made possible and is easy to carry out [9].

It should be noted that in the case of Takagi-Sugeno fuzzy
models it presents a remaining problem to perform data validation,
i.e. establishing a division of the whole operating domain of the
process into a number of overlapping local subdomains through
the appropriate choice of fuzzy sets and values of the parameters
of the membership function of each set, and also formulating
a linear process model for each subdomains. Furthermore, the
state vector to be found in (1) and (10) need be fully measurable,
which is most often impossible in industrial conditions. For these
reasons, MPCS algorithms are used mainly to control those
processes, description of which in the form of state equations is
natural, e.g. in electromechanics [16, 17]. In other cases, the
algorithm should be supplemented by a state observer or Kalman
filter, which is generally not a trivial task, if nonlinear processes
are concerned. Fortunately, it is possible to design a nonlinear
observer, e.g. in the form of a local observer network [9], provided
the process allows to be described by the fuzzy model (6).

3. Improving the robustness of the Fuzzy
Model Predictive Controller

To improve the robustness of the proposed Fuzzy Model
Predictive Controller (8) we suggest incorporating it into the Model
Following Control (MFC) structure. In the MFC structure, described
closer for the first time in [20, 21], the basic control task is
performed by the main controller matched in a most optimal way
to the process model. On the other hand, the task set for the
auxiliary controller is to support the main controller by generating
a corrective signal that depends on the difference between the
outputs produced by the adopted model and the actual process. By
this means the effect produced by the process-model mismatch
(caused, e.g. by different structures) and by possible process
perturbations can be neutralized. The system robustness to model
inadequacy, as well as the control performance is thereby
increased, and the effect produced by nonmeasurable disturbances
is reduced. The principal virtues displayed by the MFC structure
are its universality due to the feasibility of employing arbitrary
control algorithms, and possibility to design controllers by
familiar methods. To put this another way, the MFC structure
permits achieving high control performance and robustness to
disturbances and process perturbations (uncertainty) by simple
means [5, 20].

Properties exhibited by the MFC structure are described most
often for the linear case. Here we will generalize them by treating
perturbations as a synthetic description of changes of all kinds
experienced by the process in reference to the nominal model, thus
indirectly as a description of the mismatch between the adopted
nonlinear fuzzy model (6) and the actual nonlinear process [21].

We propose in this paper to employ the above-mentioned
nonlinear predictive fuzzy algorithm (8)—(10) as the main
controller in the MFC structure. To synthesize the auxiliary
controller the nominal linear process model is adopted. It is
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assumed that the model is stable and controllable with a full-order
matrix B, and is defined by

x ) (k+1)=Ax,, (k) +Bu,, (k) (an

Next, it is assumed that the controlled process is subjected to
unknown, yet bounded perturbations, and is acted upon by
disturbances, not necessarily bounded, dependent in a known way
on the state vector. Hence, the process is described by the
following nonlinear state and output equations

x(k+1) = [A+AA(x(K))] x(k)+[B+ AB(x(k),u(k))] u(k)+d(x(k))
y(k)=[C+ AC(x(K))] x(k) (12)

with the perturbation matrices defined as

AA(x(k))=BF, (x(k))=BF,
AB(x(k),u(k))=BF, (x(k),u(k)) = BF, (13)
AC(x(k))=AC,

and the disturbance vector as
d(x(k))=BF, (x(k))a(x(k)) = BF,,a, (14)

where a is a known function of the state vector, and matrices F,,
F,, F,, AC are unknown yet bounded. Additionally, the vector (14)
also may represent a nonlinear bounded process uncertainty. The
presence of the B matrix in descriptions of perturbations (13) and
disturbances follows from the need to compensate -effects
produced by perturbations and disturbances by means of the
control signal [22].

Furthermore, it is assumed that the perturbed input matrix may
be defined as

B+ AB(x(k),u(k))=BH(x(k),u(k))=BH, (15)

and it may be found such £> 0 that the following condition will
be fulfilled by assumption for the H matrix for each v(k)

v (k)Hy(k) = fv" (k)v(k) (16)

With eqgs. (12)—(15), the state equation for the perturbed process
takes the form

x(k +1) = Ax(k) + BH, u(k) + B[F, x(k) +F,.a,] ~ (17)
The task set for the auxiliary controller is to generate an

auxiliary control signal such that the model be well tracked by the
process

-y, | <e, &>0 (18)

Following the approach proposed in [5, 22], we assume that the
control signal is comprised of two components: uy that has to
linearize input nonlinearities, and uy that has to compensate
effects produced by bad estimation of nonlinear perturbations

u(k) =u (k) +up (k) 19)

assuming the former component is defined by

uy (k) =H"u, (k)-F,x(k)-F,a, (20)
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From eqgs. (17), (19) and (20) it follows that for perturbations
accurately estimated (H =H, |:'0 =F,, F, =F,) and ux(k) = 0, the

process (17) shows identity with the model (11), hence, the model
is tracked accurately by the process.

If perturbations are estimated inaccurately, then the tracking
error may be found by subtracting side-by-side eq. (11) from eq.
(17) with eq. (20) in mind:

x(k+1)—x, (k+1)=e(k+1) = Ae(k) +BH,u (k) +T,b,) (21)

T, :[HkH‘]—I 'F,, —H,A"F, lFZk—HkFrlﬁz] (22)

(k)
b, =| x(k) (23)
a,

Matrix T; determines the unknown, current (at the £ instant) value
of the perturbation estimation error with the proviso that

IT|<T., Yk >0 (24)

and components of the vector b, are known or available for being
measured, according to the assumptions adopted.

For the proposed MFC approach to be effective, it is sufficient
to prove that the model state is tracked by the process state, i.e. the
state of the system (21) is bounded if excited by (20). Considering
that the perturbation AC (13) is bounded, the condition (18) will
be thereby met.

As suggested in [5, 22], we propose to employ the control
component uy, as a signal with bounded amplitude

_ vk
u)=-piovs ble@lenlod) 9
where
v(k)=(B"PB) 'B"PAe(k) (26)

after the fashion of optimal control with a quadratic performance
index.

The matrix P represents here a positively defined, easy to find
solution of the Lyapunov equation

A'PA-P=-Q 27)

with an arbitrary chosen matrix Q> 0. The positive constant &
prevents the control signal (25) from being discontinuous in the
case that the model tracking error equals zero.

The parameters of the auxiliary controller (28) may be chosen
accordingly to the rule

> e te
Sl

nz|A| (28)
=[BT

where
4i=[cond(BPB)J

c+Ac, )<y, . Vk >0 (29)

and the parameter ¥ may be determined if only the matrices A, B
(11) and P (27) are known [5].
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Hence, in order to determine the auxiliary controller (20), (25)

the following steps are to be taken:
— adopting a process model (11),
— estimating perturbations (13) and (14), and thereby perturbations

(24) and (29),

— adopting the coefficient (16) that defines the input nonlinearity
matrix,

— adopting the maximum permissible model output tracking error (18),

— adopting the coefficient (25) that prevents from control
discontinuity.

On this basis, the tunable controller parameters (28) are evaluated,

and then the auxiliary matrix P is found by choosing the Q matrix

and solving eq. (27).

It should be noted that physical interpretation of tunable
controller parameters ry, r|, , is fairly understandable from (25),
and enables their tuning also by experiment.

On the basis of relationships (19), (20) and (25), (26) the
auxiliary controller may be presented in the form of a block
diagram shown in Fig. 1. As mentioned above, this controller is
incorporated into the MFC structure.

i Controller

i —» (20)

E Controller

! (25)

! 1 ug(k) ! Plant
| | FEEDBACK
i e(h) -1 x(k)

i a1

' Nominal \

H model (11) H

i Re i

e N N H

i k i

L wdb) w1

i Controller E

| ®) ' Y'(k)

E Ry 1 SETPOINT

Fig. 1.  The proposed MFC structure with the fuzzy predictive main controller
R, and the robust auxiliary controller Rp

Rys. 1. Proponowany uktad MFC z rozmytym predykcyjnym regulatorem
glownym R, oraz odpornym regulatorem pomocniczym Rp

To determine permissible perturbations of the nonlinear control
process, an appropriate nominal process model (11) should be
adopted. This can be done on the basis of the set of Takagi-
Sugeno local models given by eq. (2). If we adopt the central
fuzzy submodel (submodel for the most frequently occurring
process working point) as the nominal model (11), then the
maximum perturbations experienced by the nominal model matrix
can be easily estimated by comparing the relationship for fuzzy
models (6) and that for the process model (12) and perturbation
matrices (13):

A, ~IA]<|AAG®),,,, =BF,
B.1... Bl <[AB(x(k).u(k)). =BF,
IB.| <BH (30)
[C.].... -IC] < |ac®)),,

4. Conclusions

The applicability of the proposed control method has been
verified by simulation tests and by tests where a real
electrothermal plant has been governed by a distributed

Programmable Automation Controller (PAC) system in which the
proposed predictive control algorithm has been implemented.
Tests have shown that the proposed solutions are easy to
implement, and provide relatively high robustness and control
performance [5].
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