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Abstract

In the paper methods for decoupling of dynamic multivariable systems are
presented. There is discussed both static and dynamic decoupling of
systems for open-loop control. The designed elements of the system
provides elimination of interactions between specific plants inputs and
outputs in a steady and transition state respectively. Results of
considerations are illustrated by a numerical example.

Keywords: multivariable systems, static decoupling, dynamic decoupling,
stability.

O odsprzeganiu liniowych ukladow
dynamicznych MIMO z zapewnieniem
stabilnosci

Streszczenie

W artykule omawia si¢ sposoby odsprzegania dynamicznych
wielowymiarowych uktadow liniowych do celéw sterowania nimi
w otwartej petli. Rozwaza si¢ zardwno odsprzgganie statyczne eliminujace
interakcje migedzy poszczegdlnymi wyjsciami obiektu w stanach
ustalonych jak i odsprzgganie dynamiczne pozwalajace na eliminacjg tych
oddziatlywan rowniez w stanach przejsciowych. Rozwazania zilustrowano
przyktadem obliczeniowym.

Stowa kluczowe: uktady wielowymiarowe MIMO, odsprzgganie statyczne,
odsprzeganie dynamiczne, stabilnosé.

1. Introduction

A characteristic feature of multi-input multi-output (MIMO)
dynamical systems, which differs them from single-input single-
output (SISO) systems is coupling of their inputs and outputs. It
means that each input (control signal) may affect many of their
outputs (controlled signals) at the same time. Such interactions can
be inconvenient in designing multivariable control system, as well
as may cause serious difficulties during the control of such
systems, especially, in open-loop control systems because apart
from the expected (desirable) influence of the chosen input signals
to the specified output system signals, an additional undesirable
interactions may occur. Thus elimination or at least reduction of
such undesirable interactions in MIMO system is a problem of
a great practical and theoretical importance.

For dynamic systems the above mentioned requirements may
concern the interactions between signals both in a steady state and
transition states. Elimination of such undesirable interactions only
for steady states of the system is called static decoupling, whereas
elimination of these interactions in transition states is called
dynamic decoupling.

2. The plant descriptions

We consider a controllable and observable linear multivariable
dynamic LTI systems (continuous or discrete-time) described by

the state and output equations

x(t) = Ax(t)+ Bu(t)
y()=Cx(t)+ Du(t)

x(k+1)= Ax(k)+ Bu(k) o
y(k)=Cx(k)+ Du(k)

where x()eR", u(-)e R" and y(-)e R’ are the state, input and

output vectors respectively, with the matrices A4eR"™,
BecR™, CeR™ and DeR"™ where m>/. In a polynomial
approach the systems are described by /xm rational (proper)
transfer matrices 7'(-) of full rank /:

T(s)=C(sI,— A)'B+D=B,(s)4'(s)

or
T(z)=C(zl,— A) ' B+ D = B,(2)4,'(2). 2)

We assume that polynomial matrices A (-)eR[-]"" and
B,(-) e R[.]"™ are relatively right prime (r.r.p.) with 4,(-) column-
reduced and they satisfy the conditions deg , B,(-) < deg_ 4,()=d,,
i=12,...m.

Following the theorem given by [1] and results given in
numerous afterward papers, we have assumed (for dynamic

decoupling) that the system to be decoupled should be described
by invertible or right-invertible transfer matrices 7'(-) with m >/,

(i.e. of full normal rankT()=1/). Then it is possible to find a
proper transfer matrix 7.() of dimension mx/, such that
TOT.()=T,() where T,(:) is nonsingular, diagonal (or block
diagonal) rational transfer matrix. For static decoupling, systems
to be decoupled may have any number of inputs » and outputs /,
but should be described by the transfer matrices 7'(-) of full rank
being equal to m or [ (i.e. they can be either invertible or right-
invertible as well as left-invertible).

3. Methods of decoupling of MIMO systems

Depending on requirements imposed on a system, one may
design the system (statically or dynamically decoupled) for
manual control or as a dynamically decoupled part of the
automatic control system (regulation system).

In the first case, the system being dynamically (block or
diagonal) decoupled standalone should also be internally stable
and internally proper (physically realizable). In the second
situation, when the dynamically decoupled system will be a part of
a composed (multiloop) control system only — it may be, for
example, a part of a multipurpose control systems MCS — it does
not have to be stable. It will suffice, after decoupling, the system
will be controllable and observable, i.e. do not consist any
unstable uncontrollable and/or unobservable “hidden” modes.
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Since static decoupling of MIMO dynamic systems concern
their steady-state properties, static decoupled systems must be
stable (internally stable) in any case. Additional requirements may
concern dynamical properties of such decoupled system in
a transition phase of its behavior. It can be noted that any
multivariable control system which guarantees zero steady-state
errors is a static decoupled one.

3.1. Static decoupling

For static decoupling of stable MIMO systems it is enough to
use a static feedforward compensator (static precompensator)
G e R™' included in the input u(-) of a system, such that

K.G=1, 3

for a case when m>/. If m<[ a static postcompensator
G < R™ adjoined to the output y(-) of a system such that

GK,.=1,, “)

may be used. In these equations K, € R™” is the “gain” matrix of
a system (1) defined by

K,=[C(sI,-A)'B+D] =C(-A)'B+D (5)

oo
for continuous systems and

K,=[C(zI,~A)'B+D] =C(I,-A)"'B+D (6)

‘::l
for discrete-time systems, respectively. If the MFD forms (2) are
used as a plant description these gain matrices can be calculated
from relationships

K, = |:Bl (S)Afl(s)] . or K, = [A;] (S)BZ(S)]‘\:0 M

for continuous and

K, =[B()4"(2)] ok, =[4,"2)B,(2)]

®)

for discrete-time systems, respectively [2].

To obtain the matrix G e R™ for static precompensator the
eq. (3) should be solved. For systems with the same number of
outputs and inputs (m=1), it is defined simply by inversion
K;' (if nonsingular), ie. G=K,'. If m>1 pseudoinverse
operations of matrices in terms of (7) and (8) must be used to
obtain

G =[4,(0)B/(0)] or G=[B;(0)A,(0)] ©

and
G =[4,)B/ ()] or G=[B;(1)A4,(1)] (10)

respectively, where B/(-) and Bj(-) denote pseudoinversion of
matrices B,(-) and B,(-). The same relationships are also true for
static postcompensators G € R™' appended to the system output
y(-) to produce an “external” signal vector z(-)=Gy(), if the
system to be decoupled has less inputs » than outputs [ (m<1).
They follow directly from solution of the eq. (4).

When a decoupled MIMO system is unstable it should be
stabilized before its decoupling. If the state vector x() of

a decoupled system is accessible for measurement, one can apply

linear state variable feedback defined (/s.v.f)) by (static) matrix
F e R™" to obtain (stable) transfer matrices

T,(s)=(C~DF)(sI,~ A+ BF) B+D = B,(s)C;'(s), (1D
for continuous-time and
T,(z)=(C-DF)(zl,~ A+ BF) ' B+D = B,(z)C;'(z) (12)

for discrete-time systems, respectively, where C,(-)eR[-]"™" is
stable (Hurwitz or Schur) polynomial matrix. Then using static

precompensators G e R™' given by

G =[C,(0)B;'(0)] (13)
for continuous-time and

G=[C,()B; (1] (14)

for discrete-time systems with the same number of inputs and
outputs m =/, as well as by

G =[C,(0)B; (0)] (15)

and
G =[C,()B/(1)] (16)

for systems with m >/, we get static decoupled systems which
satisfy the conditions

[T, (s)G]H =1, ([T, (Z)G]\::, =1, respectively) (17)

This is the most efficient method for static decoupling by using
Ls.v.f. together with static precompensators when plant state
vector is accessible for measurement. The same relationships are
also true for static postcompensators G e R™' appended to the
system output y(-) after its stabilizing.

When a state vector of the system to be decoupled is not
accessible (or contaminated by stochastic disturbances like white
Gaussian noise), then either a Luenberger observer (full or
reduced order) or Kalman filter is to be applied in (LQ/LQG or
modal) compensators (controllers) designed. The feedback matrix
F e R™" is included then into the structure of that observer or
Kalman filter as an output matrix of their “standard” state space
realization (using a copy of the state space plant description) [3].

These (optimal or modal) compensators can also be designed in
s € C(or zeC) domain in the form of relatively left prime (L.7.p.)
MEFD of (proper) transfer matrices M;'(-)N,(-) obtained from the

minimal degree solution of the unilateral (left-side) polynomial
matrix equation

NL,(O)B () +M,()A4,()=Q()C,() (18)

where Q(-) € R[] is a stable (Hurwitz or Schur) denominator
matrix of the observer or Kalman filter. After applying so obtained
compensators as a controllers in a classic feedback structure
presented in Fig. 1, we get the transfer matrix for (stable) closed-
loop system between the signals u,(-) and y(-) in the form

T, ()=BO[M,O0A40)+N,0B O] M=

o (19)
=B,()C; (0" (OM,()
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Fig. 1.  Feedback control system structure with dynamic compensator in s € C or
z e C domains

Rys. 1. Klasyczna struktura wielowymiarowego uktadu sterowania z dynamicznym
sprzgzeniem zwrotnym w dziedzinach operatorowych

For plants with the same number of inputs and outputs m =1,
the static precompensator G e R™ is given by

G=[B,()A" ()M, ()] =[M, ()A(s)B; ()] =

-1
ls=0

. (20)
=[4()B ()] +IM; &N,(5)]_ =K} +K,
for continuous systems and
G=[B ()4 (M, ()] =[M, (2)A(2)B'(2)]_ = 1)

=[4()B' ()] +[M'(N,(2)] =K'+ K,

for discrete-time systems respectively, can be used for static
decoupling of them.

If the number of plant inputs » is greater than the number of
its outputs / (m > 1), then the right pseudoinversion B/(-) of the
numerator matrix B,(-) should be applied.

The K, e R™ and K, e R™" in above presented relationships
are the ,,gain” matrices of the controller M;"'(-)N,(-) and the plant
B,()A4;' () , respectively.

The static precompensators G € R™ defined by the egs. (20)
and (21) decouple those (stabilized) systems, which in steady-state
satisfy the conditions

[T, (sG] =1, ([T, (2)G]_ =1, respectively) (22)

lo
for a case when m>/. If the system to be decoupled has the
number of inputs m less than outputs / (m</) then static
postcompensators G € R™ appended to the system output y(-)
and defined by the same relationships (20) — (21) can be used to
satisfy the condition

6T, ()], =1, (IGT,, (2)] , =1,, respectively)  (23)

ls-0

These postcompensators decouple left-invertible systems in
steady-state between the input vector signal u(-)e R™ and

“external” signal vector z(-) € R".

3.2. Dynamic decoupling

A general requirement for the dynamic decoupling of
a multivariable system with 7 inputs and / outputs is to lead the
system to the situation when some specific group of inputs affects
only a specific group of outputs and all other interactions between
these input and output groups are eliminated. It is called dynamic
block decoupling.

If the goal of the decoupling is to create separable pairs of
signals with one input to one output then the decoupling is called
diagonal dynamic decoupling or row-by-row decoupling. It is the
most rigorous but the most typical goal for dynamic MIMO
systems, where one input of the control system affects only one of
its outputs, both in a transition and steady state of the system.

PAK vol. 53, nr 6/2007

Let /,1,,....1, and p,p,,..., p, be the sets of positive integers

which satisfy the condition
k k
i =1 and Y p =p, 24
i=1 i=1

for which the output vector y(-) e R' of the decoupled system and
the vector of exogenous signals ¢(-) € R” have the form

YOO e 5O 5O] O R

and

40=[a/0) - 4’0 . 4! O] . ) eR". (25)

The goal of a (block) dynamic decoupling of a linear dynamic
MIMO system with inputs u e R” and outputs ye R' in seC
(or z e C, respectively) by a rational transfer matrix T'() I/xm, is
to create a system with inputs ge R” and outputs ye R',
described by diagonal transfer matrix T, (-) = diag[T,(-)], where
T,(), i=1,2,..,k are nonsingular transfer matrices of dimensions
I, x p,; k is a number of groups (blocks) into which signals ¢ and
y are partitioned. In a block decoupling it is possible to take an
exogenous vector g € R” either as p=m or p=/. In the case of
diagonal decoupling /, = p,=1,and p=1.

A special type of dynamic decoupling is a triangular decoupling
where it is required that each ;-th input controls j-th output not
affecting any j-th output for j>i. Triangular decoupling is of

minor practical significance and it is easier in realization, so it will
not be considered in the paper.

Dynamic decoupling may be realized in many different ways,
depending on the structure of the system to be decoupled,
requirements imposed on a system after decoupling, the method of
decoupling and the forms of describing systems in time or
frequency domain [4-8].

3.2.1. Dynamic decoupling by output
feedback

Due to possibility of measuring outputs of the system, one of
the most popular method of dynamic decoupling is the use of the
output feedback. It may be realized by the output feedback H(-)

together with an input dynamic compensators G(-)

u()=HC)y(O)+G()q0)> M

where H(-) and G() are proper transfer matrices in s e Cor

zeC, respectively. Special cases of such method of decoupling
are situations when one or both of the matrices H(-) or G(:) are

static (of zero degree).

A special case of the decoupling by output feedback is
a dynamic decoupling in an unity output feedback structure [9].
Such a system has the structure of a typical control system (with
unity output feedback), where onto inputs to the plant dynamic
compensators are placed. This allows one to achieve
simultaneously decoupling and stabilization of the closed-loop
control system.

From the analysis of many papers concerning dynamic
decoupling it follows that the inner stability and property of the
(parts of) decoupled systems by using the structure with output
feedback, is not simple to ensure and in many cases is simply
impossible.

The most of the proposed methods allows some fixed poles to
exist in the decoupled system which can result in the system
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instability. Moreover, they are often confined to square plants with
minimum-phase transmission zeros only.

3.2.2. Dynamic decoupling by l.s.v.f.

Linear state variable feedback (/.s.v.f)) usually together with an
input dynamics (dynamic feedforward compensator) seems to be
the most effective way of decoupling. The decoupling law takes
here the following form:

u()=-F()x()+G()q()- @7

One of the imposed requirements for the designed system is its
possibly the lowest rank. From that point of view the best solution
of the problem is the use of static feedback matrices F € R"™" and
G € R™? (zero degree).

However, decoupling by static matrices F and G apart of
block or diagonal decoupling of the system do not guarantee
achievement of many other features important from the practical
point of view. Namely, systems with only static feedbacks can be
unstable, which makes them impractical for open-loop (manual)
control. They can also be unobservable and/or uncontrollable
(with unstable hidden parts) which means that such decoupled
system cannot even be automatically controlled, i.e. it cannot be
a part of a multipurpose control system [10, 11].

In the papers [12, 13] we have presented the algorithm (using
a Ls.v.f. with dynamic precompensator) for dynamic decoupling
MIMO systems, which provides a decoupled (block or diagonal)
system without any unstable uncontrollable and unobservable
parts. The decoupled right-invertible or invertible plant (m>1)
can be unstable, non-minimum phase or both. The algorithm
ensures that the decoupled system is always internally stable and
internally proper (physically realizable).

The idea of the method is as follows. By using the linear state
variable feedback along with the dynamic feedforward
G '(s)L(s) presented in Fig. 2, we decouple the system between

the signals ¢ and y to obtain a block diagonal transfer matrix

T,,(5)= B,(5)[G(5)4,(s)~ F(5)] L(s)= N(s)D"'(s) (28)

with
N(s) = block diag[ N, (s),i =1,2,...,k] € R[s]" (29)
and
D(s) = block diag[ D, (5),i = 1,2,...k]e R[s]".  (30)
Feedforward
compensator Plant
u X

q R - — X, Y
— L(s) 4’?—5 G (s)—A4, (S)T B.(s) —
+ -

L(s) F(s)
1 |

Fig.2.  Structure of the dynamically decoupled system with accessible state vector
of the plant

Rys. 2. Struktura dynamicznie odsprzg¢zonego uktadu z dostgpnym wektorem stanu
obiektu

The algorithm starts with determination of the numerator matrix
N(s) of the decoupled system which is taken as a block diagonal

matrix N(s)=block diag[N,(s),i=1,2,...,k], where particular
blocks N,(s) are great common left divisors of columns of i-th
row-block of B, (s) caused by the partition (25)

BII.(S)
B(s)=| B,(5) |- (31)
Blk.(s)
Then B, (s) takes the form
B,(s)=N(s)B(s) - (32)

Next steps of the algorithm allows us to calculate a feedforward
G'(s)L(s) and the state vector feedback matrix F. The
denominator matrix D(s) is arbitrary set which guarantees free

location of all controllable and observable poles of the system,
independently for each loop (block) of the system. Some
unobservable and uncontrollable poles, if exist, are freely chosen
in designing of the system. The algorithm provides also handling
a situation when the plant has non-minimumphase interconnection
transitions zeros. Then an additional dynamic element is added
into inputs of the plant and finally moved to a dynamic
feedforward compensator [12, 13].

The state vector x(-) of the decoupled system is usually not

accessible and/or contaminated by stochastic disturbances. Then
either a Luenberger observer (full or reduced order) or Kalman filter
has to be applied. The feedback matrix F (designed as if the state
vector was accessible) is then included in the structure of an observer
or filter as an output matrix of its state space description [12].

4. A numerical example

In order to illustrate the above considerations the design
procedure of systems to be manually controlled for a multivariable
dynamical system of rank »=5 with m =3 inputs and /=2
outputs described by the state and output equations (1) where
appropriate matrices take the form

0 10 1 0 000
2 -1 1 5 1 10 3
A=|-4 02 1 -1|. B=[ 0 1 0]
1 -1 1 0 =2 10 1
0 10 -1 0 020
1020 -l 000
C‘[01oo 0}’ D‘[ooo}

will be presented below.
In a polynomial approach its transfer matrix 7'(-) is described

by r.r.p. polynomial fraction

16)=B64' 0= § 3t

v2_ — -
4 0 4 :|‘s 1.225s 55 -3
1.755=2.5 0 s°+025s5-13

~10.755—4 |
8

The system is unstable and has a non-minimumphase
transmission zero 50 =25, and its gain matrix (7) has the form

0 -10.33(3) -6.66(6
Kp{o 330) 0()}

Since the system is unstable, it has to be stabilized by the
feedback to obtain (11) and statically decoupled afterwards.
Taking values for poles of the closed-loop system as

51, =-2.12180% j0.53925, 5, =—3.11453

3

and
5,5 =—2.58765+ j3.20271
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we have set the matrix

5% +4.243615 +4.79285 0 0
C(s)= 0 5+3.11453 0
0 0 52 +5.175305 +16.95326

which yields the feedback matrix

11.237216 4.060902 -9.140032 -1.432706  6.070016 |
F =|-2.778632 0 2.557265 0 0.278632
3.988315 0.793825  0.500000  2.543825 —0.250000

Then the static precompensator G, which decouples the
system, calculated from the eq. (15) is as follows

—0.958569 -0.479285
G=[COB/O]=| 0 o |
0.847663 —1.695326

Results of simulation of such statically decoupled system are
shown in Fig. 3. The simulation was done with the assumption of
non zero initial conditions of the state vector

x(0)=[1,-2,3,-4,5]'. The reference signal was taken as
q(t)=q,1(t) for g, (1)=10 and g, (#)=-10 changed at the time
t,=10s and ¢, =20s, respectively.

15 -
10
— vl
=== Y%(t)
5k — qlo | |
] — q20
i
1
g 7, ] ,/
\ W
'Y
-5
\
\
\
1
\
1
10 o=
15 I
0 5 10 15 20 25 30
Czas [s]
Fig. 3.  Step responses of the statically decoupled system with accessible plant state
vector
Rys. 3. Odpowiedzi skokowe statycznie odsprzgzonego uktadu z dostgpnym

wektorem stanu

Assuming the plant state vector is inaccessible, the modal
compensator M,'(s)N,(s) based on a Luenberger observer has

been calculated. Taking poles for the observer as

5,=-90.4579, 5, = -53220, 5, = —2.50874

and
=-5.08145+ j5.82653

Sas

(including the above presented matrix F) we have obtained an

unstable compensator with the “gain” matrix

—4.70133  2.38186
K, =[M, (0)N,(0)]=| -1.93082  2.17558
~0.05748 —1.39459

So the static precompensator for this system has been given as

follows
-3.801325 3.331855
G =[4,(0)B/ (0)]+ K, =|-1.930824 1.175577 |
—0.207483 0.155413

Results of simulation of such decoupled system are shown in
Fig. 4. The simulation was done with the same (non-zero) initial

conditions x(0) = [1,—2,3,—4,5]T for plant state vector and (zero)

initial conditions for state vector of the observer.

80 T T T T
5 — 1)
n A === y2()
40 W i 2 yilo
i 1 h —r]
" e, )
207} i 1 ]
: ! P
i ;
of /N I l
N i b
? .
20 - : ;|
01 VA §
H
H
8044 g
[
i
H
8041 .
H
1
i
H
-100 -4} .
w
¥
120 1 I 1 i I
0 5 10 15 20 5 30
Czas [s]
Fig. 4.  Step responses of the statically decoupled system with an inaccessible plant
state vector
Rys. 4. Odpowiedzi skokowe statycznie odsprz¢zonego uktadu z niedostgpnym

wektorem stanu

To compare the features of a statically and dynamically
decoupled systems the same plant has been assumed to be
dynamically decoupled by using Ls.v.f. together with a dynamic
feedforward compensator. All calculations have been performed
using the algorithm given in details in [12].

Taking the controllable and observable poles

5., =—2.12180% j0.53925, s, =-3.11453

and
=-2.58765+ j3.20271

s4,5

and one uncontrollable pole
Sg=-5

for the dynamic decoupled system we obtain a feedforward
compensator G~'(s)[L(s) L,(s)] with matrices

5—25.8218 —0.060965+1.5741 —0.27039s+6.9818
G(s)=| 5.8629 1 21.4581 >
—0.76448 -16.9761 1
—0.20440s —0.23235 0.182405—15.7306
L(s)= 0.24184 6.8303
0.20584 0.05888
and
—0.204405 —0.23235 0.18240s—15.7306 —0.09483s +23.0204
Ly(s)= 0.24184 6.8303 1.555(5)
0.20584 0.05888 -26.4072



PAK vol. 53, nr 6/2007

51

and the state vector feedback matrix F

—181.9180 -38.0063 37.4788 —141.4452
F=| -165539 —4.7426 10.5962
0.1896 -0.4011 -1.1564

18.4644
—1.1346 -7.9577
-0.8021 -0.7883

Transfer matrix of the system T, ()=T,(s)=N ($)D7'(s) is
finally described by the matrices

N :[S N s—oz.s}

and

D(s)= s +7.3581s> +18.010s +14.927 0 .
0 s +5.17535 +16.953

Its gain matrix has the form
- —-0.1675 0
K, =[N6D' 0], :[ 0 —0.1475]

In order to obtain K, = I, the above mentioned L(s) has been

postmultiplied by
- -5.9710 0
[DON )], :[ 0 76.7813}
which finally gives
1.22055+1.3874 —1.2369s5+106.674
L(s)=|  —-1.4440 —46.3182
—1.2291 -0.39929
and
[-5.9710(s-2.5) 0 ,
N(s) ‘[ 0 —6.7813(s —2.5)}

Results of simulation of such designed system are shown in Fig. 5.

25 T

— i
=== y2()
20 al® H
— q20)
15 \
10 \ f
Gl
1
{l
1
L]
/ \
0~ i 7
{ 1
1} 1
[} [}
\
5L ! ]
H
1
1
1]
1
-10 7
-15 i i
5 10 15 20 25 30

Czas [s]

Fig. 5.  Step responses of the dynamically decoupled system with accessible plant
state vector

Rys. 5. Odpowiedzi skokowe dynamicznie odsprzgzonego uktadu z dostgpnym
wektorem stanu

Simulations were done with the same (non-zero) initial

conditions x(0) = [1,72,3,74,5]T for plant state vector and (zero)

initial conditions for state vector of the dynamic feedforward
compensator. Similar results may have been obtained by using an
observer or a Kalman filter in the case when the state vector x(z)

is inaccessible and/or noised.
5. Conclusion

In the paper problems of static and dynamic decoupling of
linear MIMO dynamic systems have been presented. The
algorithms that may be used to design a system for open-loop
control ensure stability and free assignment of all poles of
decoupled systems. In such a system we achieve desired values
for outputs y(-) > y, when g(-) = y, is given on external inputs
of this system. The proposed method for static decoupling may
be applied to systems with any number of inputs » and outputs
| by using a static precompensator for m>] or static
postcompensator for m <[, after the systems have been
stabilized. All presented methods provide internal stability and
internal property for both unstable and non-minimum phase
proper plants. Results of considerations are illustrated by
a numerical example.
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