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Abstract

In the paper a short review of methods applied for pattern
electroretinogram  signal analysis is presented. Various possible
alternatives for classical method used in medical practice are described.
The capabilities and disadvantages of each method as well as relevant
results are briefly presented and/or references are cited. The described
algorithms are: statistical regression analysis, continuous wavelet
transform, discrete wavelet transform, artificial neural networks, principal
components analysis and independent component analysis. The aim of the
paper is to give a short review of previously taken activity in the field of
pattern electroretinogram analysis particularly for diagnostic purposes, and
present a guide for possible approaches to be applied for other bioelectrical
signals.

Keywords: signal analysis, pattern electroretinogram, PERG, statistical
analysis, continuous wavelet transform, discrete wavelet transform,
artificial neural networks, principal components analysis, independent
component analysis.

Wybrane metody analizy sygnatu
Elektroretinogramu wywotanego wzorcem

Streszczenie

W artykule przedstawiono przeglad metod zastosowanych do analizy
sygnatu elektroretinogramu wywolanego wzorcem. Zaprezentowano
szereg mozliwych technik alternatywnych w stosunku do procedur
uzywanych w praktyce klinicznej. Przedyskutowano zalety i ograniczenia
kazdego z algorytmow, przedstawiajac pokrotce wyniki doswiadezen lub
cytujac  odpowiednie pozycje literatury. Opisane algorytmy to:
statystyczna analiza regresji, ciagla i dyskretna transformata falkowa,
sztuczne sieci neuronowe, analiza skladowych glownych (PCA) oraz
analiza sktadowych niezaleznych (ICA). Celem niniejszego artykuly jest
usystematyzowanie wczesniejszych dziatan autoréw w dziedzinie analizy
elektroretinogramu wywotanego wzorcem, w szczegélnosci dla potrzeb
diagnostyki, oraz zaproponowanie metodologii badan sygnaloéw
bioelektrycznych o podobnym charakterze.

Slowa kluczowe: analiza sygnatéw, elektroretinogram wywolany
wzorcem, PERG, analiza statystyczna, ciagla transformata falkowa,
dyskretna transformata falkowa, sztuczne sieci neuronowe, analiza
sktadowych glownych, analiza sktadowych niezaleznych.

1. Introduction

When the eye is stimulated with an alternating black and white
checkerboard (with constant total luminance), a specific
bioelectric signal, the so-called pattern electroretinogram (PERG)
is recorded from the human retina with a corneal contact
electrode. PERG signal originates in the retinal ganglion cells as
well as neighboring inner retinal structures. Particular waves
reflect the electrical activity of different neural structures involved
in visual information processing and are used in assessment of
their function [7]. According to the ISCEV (International Society
for Clinical Electrophysiology of Vision) standards [4] clinical
evaluation of the PERG recordings is based on measurement of
implicit times and amplitudes of particular waves (Fig. 1).
However, in many cases it is difficult to localize the peaks
precisely, so the method of analyzing the PERG parameters in
time domain is inaccurate. This disadvantage affects reliability of
this very important and valuable electrophysiological test. The aim
of our studies was to demonstrate the possibility of finding
features of the PERG signal reliable for distinguishing between
normal and abnormal cases with better accuracy. In the paper
a review is presented of the methods applied by the authors for
PERG analysis — mainly for diagnostic purposes.
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Fig. 1. Parameters of the of the PERG waveform components
Rys. 1. Parametry sktadowych morfologicznych przebiegu PERG

2. Overview of methods

The methods applied for PERG signal analysis can be divided
into three groups, with respect to the purpose of calculations. The
first group contains techniques used to increase the accuracy of
determination of PERG signal parameters. However, the
evaluation of the waveform is still performed according to
traditional ISCEV recommendations. Second group consists of
methods allowing reduction of dimensionality. They may act as
preprocessor for classification algorithms. Third group performs
automatic classification of PERGs, using their own calculated
criteria, which are not human readable. Methods applied by the
authors for PERG signal analysis are shown in Fig. 2 and their
description is summarized in Tab. 1.
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Fig.2. Diagram showing methods applied for the PERG signal analysis
Rys. 2. Schematyczne przedstawienie metod zastosowanych do analizy
sygnalu PERG

Tab. 1. Summary of methods applied for PERG signal analysis
Tab. 1. Zestawienie zastosowanych metod analizy sygnatu PERG

Abbrev. Name Description Ref.
D&RA Discriminant | Classification algorithm allowing finding | [3, 6, 8,
functions and | linear or quadratic functions capable of 10, 12,
regression distinguishing between two classes of 16]
analysis learning samples. Requires assumption on
(statistical normal distribution of features. Results in
methods) obtaining reduced set of diagnostically
important parameters
CWT Continuous Improvement of accuracy of implicit [8,9,
Wavelet times and amplitudes measurement of the | 11, 13]
Transform waveform in CWT coefficients domain
DWT Discrete Pre-processor for various classifiers. Used | [13, 15]
Wavelet for signal denoising as well as for
Transform dimensionality reduction of input data
(lossy compression). Improves the
performance of classification algorithm
by increasing the ratio of learning samples
number to their dimension
ANN Artificial Well-known classification algorithm. [2,3,
Neural Used for distinction between normal and 13, 15]
Networks abnormal recordings. Results in better
(than traditional method) classification
rate, but acts like a “black box”.
PCA Principal Used for dimensionality reduction of the [2, 14]
Component | input data. Can be used as a preprocessor
Analysis for a classification algorithm, or as a
method of 2-D visualization of
multidimensional data.
ICA Independent | Used for signal denoising and recovery
Component | of proper PERG shape [1,5]
Analysis

3. Discriminant functions and regression
analysis, Bayesian classifiers

These methods are relatively simple (compared to other
approaches listed in table 1), since they are based on statistical
concepts. They are well known to medical staff and this approach
would be probably the easiest - of proposed procedures - to
introduce in clinical practice.

Statistical methods: discriminant analysis, regression analysis
were used by the authors for distinguishing between normal and
abnormal PERGs and obtained results (mathematical models and
their optimization using Fisher F(nl,n2) test, classification
algorithms, their preliminary clinical evaluation) were presented in
several papers [e.g. 8, 10].

In opposition to “peak-based” approach another promising way
of PERG description based on wavelet compression by Discrete
Wavelet Transform was proposed [15]. Recently statistical pattern
recognition methods [2] were also used for the PERG signals. In
this study [16] Bayesian classification was applied for supervised
learning. Two types of feature sets were compared: features of
PERG waveform in time domain and in DWT domain, and
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efficiency of both approaches was assessed. Surprisingly, the
conventional approach produced higher efficiency. The influence
of patient age was also examined and separate models for two age
categories were applied. It occurred that the age factor might be
ignored for analyzed data.

Statistical analysis was also used by the authors [12] in order to
evaluate the efficiency of interpretation of PERG recordings in the
domain of Continuous Wavelet Transform coefficients, as
compared with the previously obtained results in time domain.

The results of statistical analysis of PERG signals in time
domain as well as in the CWT/DWT coefficients domain revealed
that efficient distinguishing between normal and abnormal
waveforms is dependent only on the values of reduced set of
parameters. These results also showed the possibility of creating
classification algorithms based on simple mathematical models.
Classification of the PERG waveforms based on statistical methods
was found useful in preliminary interpretation of the recordings as
well as in supporting clinical decision-making in “borderline” cases,
for more accurate assessment of clinical data [8, 10].

4. Wavelet transform

The Continuous Wavelet Transform (CWT) is defined as
follows:

CWT, (z,5)= (£ (0. v.,(0)) = \/L ?f (’)'/’(I_TTM ’

g

where the function ¥is a shifted and scaled version of a “mother”
wavelet function:
1 t—1
v, () :7,/(7)’
s \/; s

s and ¢ are the “scale” and time, which create the domain of CWT
operation. The result is a set of coefficients having two
parameters: scale (often interpreted as an inverse of frequency)
and time. They may be plotted as a two argument function in
three-dimensional Cartesian coordinate system. In Fig. 3 example
of the PERG recording and its CWT representation are shown.
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Fig.3. PERG waveform in CWT domain
Rys. 3. Przebieg PERG w dziedzinie wspotczynnikow falkowych

Distribution of implicit times of the PERG characteristic waves
(denoted as P50 and N95, according to their polarity and peak
time in milliseconds) shows that in certain cases characteristic
features of abnormal recordings lie in the same range that normal
waveforms’ features (Fig. 4). The difference between normal and
pathological values is often very small. The purpose of our first
investigation [11] was to find features in time-frequency domain,
which are more reliable for distinguishing the cases. In this study,
15 normal PERG waveforms and 7 recordings obtained in some
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precisely diagnosed retinal diseases were chosen. The recordings
were obtained with the LKC UTAS-E 2000 (USA) system. In the
abnormal PERGs, P50-wave implicit time was increased (in 4
recordings) as well as N95-wave implicit time (in 3 recordings).
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Fig. 4. Comparison of P50-wave and N95-wave implicit times: a — normal,
b — abnormal waveforms; I — P50 (time method), IT — P50 (time-scale
method), ITI — N95 (time method), IV — N95 (time-scale method);
some points overlap: group b should have 4 points (I, IT) and 3 points
(II1, IV); Mexican Hat was used as a mother wavelet function

Rys. 4. Pordwnanie czasow pikow P50 i N95 dla przebiegdéw: a — prawidlowych,
b — nieprawidlowych; I — P50 (pomiar w dziedzinie czasu), IT — P50
(pomiar w dziedzinie czas-skala), [II — N95 (pomiar w dziedzinie czasu),
IV —N95 (pomiar w dziedzinie czas-skala); czg$¢ punktow naklada si¢
na siebie: grupa b powinna liczy¢ 4 punkty (I, II) i 3 punkty (111, IV);
zastosowano falk¢ Mexican Hat

Further steps of CWT analysis were performed with a new set
of PERG data obtained in the Department and Clinic of
Ophthalmology in Szczecin with the RetiPort/RetiScan system
(Roland Consult, Germany) in 60 eyes of healthy subjects, in 2
age groups [8, 9]. Better “consistency” of normal values obtained
with the CWT method was obtained, especially for the N95-wave
implicit time. This is a very important result because traditional
measurements of the N95-wave latency are difficult and often lead
to significant errors.

More recently, in our unpublished research (paper in
preparation) it was shown that also amplitude parameters can be
determined with better accuracy after performing CWT analysis of
the PERG signal. This improvement is observed as significantly
smaller standard deviation values of the parameters as compared
to the values obtained in traditional way, i.e. measurements with
cursors placed on the peaks of a particular recorded waveform. As
a consequence, control normal values for this important test show
much less scatter and reliability of the PERG examinations can be
improved.
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Fig. 5. PERG waveform (solid line) restored from its 16 wavelet coefficients
(dotted line)

Rys. 5. Przebieg PERG (linia ciagta) odtworzony z jego 16 wspotczynnikow
DWT (linia punktowa)
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A Discrete Wavelet Transform (DWT) is computed when the
values of time and scale are shifted in discrete steps. Such an
operation can be also described as signal decomposition using
a set of lowpass and highpass filters. The filter coefficients depend
on the chosen wavelet function. DWT can be then treated as
a lossy compression of signal and method of its dimensionality
reduction [15]. In described case it allowed representing the 256
samples of time waveform as 16 DWT coefficients (Fig. 5).
Therefore, from pattern classification point of view, the dimension
of the feature vector was reduced sixteen times. The procedure of
choosing the transform parameters and coefficients rejection
procedure was described in [15].

5. PCA and ICA

Principal Components Analysis (PCA) is a method of simplifying
a data set, by reducing multidimensional data sets to lower
dimensions for analysis. The operation is an orthogonal linear
transformation that transforms the data to a new coordinate system
such that the greatest variance by any projection of the data comes
to lie on the first coordinate (called the first principal component).
The first principal component accounts for as much of the
variability in the data as possible, and each succeeding component
accounts for as much of the remaining variability as possible.

Nonlinear PCA (NLPCA) can be seen as a nonlinear
generalization of standard principal component analysis (PCA)
that generalizes the principal components from straight lines to
curves. This can be done by using neural networks with
autoassociative architecture, such as multilayer perceptrons that
perform an identity mapping [3]. The middle layer of the MLP
network acts a bottleneck, reducing the dimension of the data. It
provides desired components which can be nonlinear.

Such a technique was used by authors to present
multidimensional PERG data in 2-D Euclidean space [14]. This
was done in order to increase the separability of the learning
patterns. Exemplary results are presented in Fig. 6. However, the
method has an important disadvantage. It is not repeatable,
because each time different network coefficients are obtained.
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Fig. 6. Nonlinear PCA used for graphical presentation of six-dimensional feature
space (crosses denote correct waveforms, points — incorrect ones)

Rys. 6. Nieliniowa PCA wykorzystana do przedstawienia sze§ciowymiarowej
przestrzeni cech na plaszczyznie (krzyzyki oznaczaja zapisy nieprawidiowe,
punkty — prawidtowe)

When the frequency range of a given signal overlaps with noise
and electrical activity of other organs, the method of Independent
Component Analysis (ICA) proposed by Comon [1] may be
effective. ICA is based on the assumption that the electrical
activity from a given bio-source and the artifacts are physically,
anatomically and physiologically independent processes. This
separation is reflected in statistical independence between the
different source signals (independent components) contributing to
a linear mixture of signals recorded in particular experimental
conditions.



25

PAK vol. 53, nr 6/2007

In our preliminary simulation experiments with the ICA
technique application to the PERG signal analysis, the FastICA
algorithm for MatLab developed by Hyvaerinen and Oja [5] was
used. In this algorithm negentropy (negative entropy) as a measure
of the quantity of mutual information shared by the components is
applied and maximizing negentropy (minimizing the mutual
information) in iterative process is the goal of computations.

The original sample PERG signal was mixed with the line noise,
generated by the computer (Fig. 7). The resultant waveforms with
two different S/N ratios are also shown in this figure. After ICA
processing, the two components were separated with quite good
quality.
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Fig. 7. Original PERG signal and a computer simulation of the 50 Hz noise
(two upper figures), two mixtures of PERG and noise (in the middle)
and FastICA separation of both waveforms (two lower figures).
Numbers of samples on the abscissa, voltage (1tV) on the ordinate

Rys. 7. Oryginalny sygnal PERG i komputerowo symulowany szum 50 Hz
(u gory), przebiegi zsumowane (srodek) oraz sygnaly odseparowane
przy uzyciu FastICA (u dotu). Na osi odcigtych — numery probek,
na osi rz¢dnych — napigcie (LV)

6. Neural networks

According to [2] classification has two distinct meanings: there
may be given a set of observations with the aim of establishing the
existence of classes or clusters in the data, or the number of
classes may be known in advance, and the aim is to establish
a rule which classifies a new observation into one of the existing
classes. The former type is known as unsupervised learning (or
clustering), the latter as supervised learning. Therefore, the
evaluation of a PERG recording can be treated as a supervised
classification task. Among large number of supervised pattern
recognition algorithms [3], artificial neural networks (ANN) have

enjoyed significant attention, and various network architectures
and learning algorithms have been developed for different
applications. Currently, the authors are investigating the
usefulness of various ANN types and architectures for the PERG
signal classification. Preliminary results were described in [15],
with focus on proper pre-processing using DWT.

7. Conclusions

In the paper the application of different signal processing and
classification algorithms for the PERG signal analysis were
described. The choice of method is strictly dependent on desired
goal. The signals may be de-noised, presented graphically in 2-D
space and finally manually and/or automatically classified. Signal
processing algorithms may have several primary applications.
First, improvement of detection of the PERG components.
Second, increase in accuracy of measurement of the most
important PERG parameters. And third, they may be aimed at
increasing simplicity and/or speed of the test.

As far as the usefulness of chosen methods in medical practice
is concerned, one should keep in mind that the main goal is more
accurate assessment of clinical data with this electrophysiological
test and, as a consequence, improvement of diagnosis.
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