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Abstract 
 

The active magnetic bearing control through analytically designed linear 
PD regulator, with parallel nonlinear compensation represented by 
automatic approximator is described in this contribution. Coefficient 
(parameter) values come from actions of Continuous Action 
Reinforcement Learning Automata (CARLAs). Influence of CARLAs 
parameters to learning is discussed. Parameters influence is proved by 
simulation study. It is shown that learning improvement can be reached by 
selecting appropriate parameters of learning. 
 
Keywords: active magnetic bearing control, continuous action 
reinforcement learning automata. 
 
Samo uczący się sterownik aktywnego 
łożyska magnetycznego oparty na  
metodzie CARLA 

 
Streszczenie 

 
W artykule przedstawiono sterowanie aktywnego łożyska magnetycznego 
za pomocą analitycznie dobranego regulatora PD z nieliniową 
kompensacją równoległą. Współczynniki kompensacji są wyznaczane 
automatycznie z użyciem metody CARLA (Continuous Action 
Reinforcement Automata). Zbadano wpływ parametrów metody na proces 
uczenia się kompensatora w oparciu o eksperymenty symulacyjne. 
Wykazano, że właściwy dobór parametrów metody prowadzi do 
poprawienia skuteczności procesu uczenia się. 
 
Słowa kluczowe: sterowanie aktywnego łożyska magnetycznego, metoda 
CARLA. 
 
1. Introduction 
 

The active magnetic bearing (AMB) inhibits contact between 
rotor and stator and so it eliminates limitations of classic bearing. 
Therefore it is possible to use AMB in specific and extreme 
circumstances where classic bearing is inapplicable. 
Electromagnets located in stator of the bearing create magnetic 
field. The force caused by magnetic field keeps the rotor levitating 
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in desired position in the middle of air clearance. So the control of 
magnetic field is necessary. 

Nonlinearity of controlled system causes problems when linear 
regulators are used for control. It is possible to control AMB by 
linear regulator near desired position only. Performance of 
regulator decreases with raising amplitude of deviations. 
Nonlinear compensating element connected parallelly to the 
regulator can be used to reduce deviations. CARLA method is 
used to detect the parameters of compensation automatically. 

CARLA method belongs to the group of learning automats. It is 
capable of learning the value of parameter without knowledge of 
mathematic model of controlled system. This property is used to 
find unknown parameter values of nonlinear compensation. 
Performance of CARLA method depends on properly set learning 
parameters. It can be shown that properly set learning parameters 
can improve the speed of learning. 

 
2. AMB model 
 

Simplified model of AMB with one DOF (see fig. 1) is used for 
simulation studies of one axis behavior. Rotor is replaced by mass 
point, gravitation is neglected (assumed as compensated one) and 
the nonlinearity is considered for electromagnetic subsystem only. 
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Tab. 1.  Parameters of model of  AMB 
Tab. 1. Parametry modelu AMB (aktywnego łożyska magnetycznego) 
 

Parameter Description Value Unit 

m  mass of rotor 0,07  [ ]kg  

b  damping 13  [ ]Ns/m  

A  parameter of magnetic force 
model 

64,9 10−⋅  [ ]2 2Nm /A  

a  parameter of magnetic force 
model 

31, 43 10−⋅  [ ]m  

d  air clearance 31, 4 10−⋅  [ ]m  

R  resistance of electromagnets 3  [ ]Ω  

L  inductance of electromagnets 32,6 10−⋅  [ ]H  
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Fig. 1.  Model of AMB and relation between magnetic force and position of stator 

and current 
Rys. 1. Model aktywnego łożyska magnetycznego oraz zależności siły 

magnetycznej od położenia wirnika i prądu sterującego 
 
 
3. Analytic design of controller 
 

Original work [1] used one controller (PID regulator). The 
regulator controlled the position of rotor by one feeding voltage 
only. Polarity of voltage determined which electromagnet was 
switched on. Results published in this paper use two analytically 
derived controllers to linearize the description of AMB (see fig. 2). 
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Fig. 2.  Schema of basic controller and PID regulator with parallel nonlinear 

compensation 
Rys. 2. Schemat podstawowego sterownika i regulatora PID z nieliniową 

kompensacją równoległą 

 
We are able to model the nonlinear characteristic of magnetic 

force, so it is possible to use this knowledge to derive nonlinear 
controller. For example it is possible to take the linearization 
method as the basis: 
When magnetic forces will behave according to (3) 
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the whole system will behave like 
 

 1 1
2 2e rmx bx kx F kx kxrγ+ + = + +&& & ,            (4) 

 
where  is force loading of AMB, eF γ  is constant, that can be used 
to compensate constant force (e.g. gravitation),  is stiffness of 
system and 

k
rx  is desired position of AMB (usually the middle of 

air clearance). This goal is accomplished by 
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where  

1 x aα = + ,  
 

( )1 2 rk x xβ ε= + , 
 

2 d x aα = − + ,  
 
( )( )2 2 1rk x xβ ε γ= − + + + . 

 
We can obtain equations of controller by constituting equations 

(5) into equations (1) 
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We obtain parameters of linear PD controller for regulation 

close to the desired position through linearization of control laws 
(6) and (7) using first two terms of Taylor expansion of function 

1,2f  for small deviations around the desired position rx  in 
simplified notation ( ) ( )1,2 1,2 1,2u f x g x= + &x  

 
 ( ) ( ) ( ) ( )1,2 1,2 1,21,2

,c p r du K K x x K≈ + − + &x                 (8) 

 
where  

( ) ( )1,21,2c rK f x= , 
 

( ) ( )1,21,2 rp x xK f x
x =

∂
=
∂

, 

 
( ) ( )1,21,2d rK g x= . 
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4. Optimal control design 
 

AMB controlled by previously derived controllers can be 
treated like linear system. Its behavior is described by (4). It is 
assumed that desired position xr is the input and real position x is 
the output of linearized AMB.  

Many methods exist to design a controller of linear system. 
Linear Quadratic (LQ) design was used to design the controller of 
desired position of linearized AMB (see fig. 2). It gives optimal 
parameters of PID regulator 

 

  ( ) ( ) ( )r p i dLQ LQLQ

dex K e K edt K
dt
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Parameters of PID regulator were computed by minimizing 
weighted cost function (10) 
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5. Nonlinear compensation 
 

AMB force load causes nonzero control error. Linearized 
control laws (8) are designed to linearize behavior of AMB near 
desired position only. Parallel nonlinear compensation which 
amplifies actions is added to compensate the deviations. 
Compensation is required only if nonzero control error exists and 
it has to reduce the deviation as much as possible. These 
conditions are fulfilled by following compensator (assumed 
desired position is 2d ) 
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CARLA method is used to detect the value of ( )1,2nK  

coefficient. It minimizes the square value of control error (x-d/2)2. 
 
6. CARLA method 
 

CARLA method [3, 4] was developed as an extension of the 
discrete stochastic learning automata. It replaces the discrete 
action space with a continuous one. It is more appropriate for 
engineering applications that are continuous in nature. 

CARLA method is working in interactions with generally 
unknown system by randomly selecting its parameter values. 
Learning consists in increasing the probability of selecting the 
successful parameter values. 
 
7. Influence of some of learning parameters 

to CARLA method 
 

Successful application of every parameterized learning method 
is conditioned by properly set learning parameters. CARLA 

method can be used to learn on real AMB so it should learn 
quickly to reach good performance in shortest possible time. The 
variance of selected actions is the measure of learning stage of 
CARLA method. Number of learning steps to reach the limit 
variance can be used to compare values of parameters. 

Comparison of values of learning parameters is done on 
learning of previously defined controller of AMB. Random  
load was applied to AMB with standard deviation [ ]0.1 N  and 
mean [ ]0.9 N  during [ ]; 0.5 st k k= +  and [ ]0.5 N  during 

)[ ]0.5; 1 st k k= + + , 0,1,2,...,k n= . 
 

7.1. Influence of parameters of gaussian 
function – gh, gw [2] 

 
Increasing value of  parameter increases the influence of last 

successful action to CARLAs probability density. It leads to 
increase of learning speed. But value too high decreases the 
stability of CARLA method. Best value is .  

hg

hg =0.35
Parameter gw indirectly indicates variance of selected action 

after successful learning. Its too high value leads on too high 
variance, but too small value noticeably decreases speed of 
learning. Best value according to speed of learning and reachable 
variance of selected actions is . wg =0.03
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Fig. 3.  Influence of parameters of gaussian function – gh, gw
Rys. 3. Wpływ parametrów gh i gw  funkcji Gaussa 

 
 

7.2. Influence of number of samples to save 
probability density (N) [2] 

 
Probability density cannot be fully saved due to the limited 

memory. It is possible to store limited number of samples only. 
Values between samples have to be computed by (linear) 
interpolation. In this case N=20 is minimal number of samples. 
Increase of number of samples above this value does not lead to 
improvement of learning speed, but increases required memory 
and computation time. 
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7.3. Influence of number of last costs to 
compute performance (R) [2] 
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Number of last costs to compute performance has little 

influence to speed of learning in this case. But it can be shown that 
properly set number of last cost to compute performance increases 
speed of learning of different controlled system. Value R=20 has 
best performance. 
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Fig. 7.  Robustness against the measurement error and action delay 
Rys. 7. Odporność na błąd pomiaru i opóźnienie działania 
 
 
8.1. Ideal conditions 
 

This test shows behavior of AMB, when no delay of action 
exists and error in measured value is zero. The compensation 
minimized the deviation to negligible value even when loading 
force is changed. The learned values were ( )1 83nK ≈  and 
( )2 75nK ≈ − .  

Fig. 4.  Influence of number of samples to save probability density 
 Rys. 4. Wpływ liczby próbek potrzebnej do zapamiętania gęstości 

prawdopodobieństwa  8.2. Robustness against the measurement 
error and action delay 
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Standard deviation of error in measured value was set to 51 10−⋅  
[m] and delay of action was set to  [s]. The compensation 
was able to control the position of AMB when controller without 
compensation oscillated. Learned values were 

44 10−⋅

( )1 50nK ≈  and 
( )2 36nK ≈ − . 
 
9. Conclusion 
 

The nonlinear compensation is capable of keeping very small 
deviation from desired center position. The values of compensator 
coefficients were detected by CARLA method. Properly set values 
of learning parameters can increase the speed of learning. Optimal 
values of coefficients depend on controlled system. It is necessary 
to detect values of learning parameters for every developed system 
to reach the best performance. 

 
Fig. 5.  Influence of number of last cost to compute performance 
Rys. 5. Wpływ liczby ostatnich wartości funkcji celu, wykorzystywanych  

do oceny działania, na szybkość uczenia się 
 

  
Published results were acquired using the subsidization of the 

Ministry of Education, Youth and Sports of the Czech Republic, 
research plan MSM 0021630518 "Simulation modelling of 
mechatronic systems". 

8. Simulation results 
 

Parameters of simulation are the same like were used to test 
influence of learning parameters. Tested learning parameters are 
the only exception. They are set to detected best values.  
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 _____________________________________________________ Fig. 6.  Ideal conditions 

Artykuł recenzowany Rys. 6. Warunki idealne 
 
 
 


