PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Application of helicopter rotor blade active control systems for noise and vibration reduction and performance improvement

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie układów aktywnego sterowania łopat wirnika nośnego śmigłowca w redukcji hałasu i drgań oraz poprawy osiągów
Języki publikacji
EN
Abstrakty
EN
This paper summarises the actual status ofthe development ofactive control systems which tookplace in rotorcraft industry. Helicopter is a specific kind of airship in which structural, mechanical and aerodynamic complexity appears more than in other aircraft. But it also offers opportunities for application of active control systems. Although contemporary research on smart structures and active control are focused ort the reduction of helicopter vibration and noise levels, the developed methodology can be also applicable to augmentation of aeromechanical stability, enhancement ofhandling qualities, stall alleviation, the minimisation of blade dynamie stresses and rotor head health monitoring. The majority of research effort concerns the improvement ofmain rotor qualities because ofits main role in helicopter aeromechanics.
PL
W artykule przedstawiono możliwości wykorzystania aktywnego sterowania łopat wirnika nośnego śmigłowca do redukcji hałasu i drgań oraz poprawy osiągów. Prace w zakresie opracowywania nowych, cichych i efektywnych pod względem osiągów aerodynamicznych i sterowania wirników nośnych śmigłowców są prowadzone praktycznie przez większość ośrodków badawczych oraz wytwórców śmigłowców na świecie. Własności wirnika nośnego w największym stopniu decydują o parametrach eksploatacyjnych całego śmigłowca: osiągach, manewrowości, poziomie drgań i hałasu, jakości sterowania, itd. Jednym ze sposobów poprawy osiągów wirnika nośnego jest zastosowanie układu aktywnego sterowania łopat wirnika nośnego śmigłowca. Badania nad takimi rozwiązaniami są obecnie prowadzone przez przemysł lotniczy na świecie (Eurocopter, Boeing) (rys. 1). Są one także tematem projektów w ramach europejskich programów badawczych (FRIENDCOPTER). Układy aktywnego sterowania są konstruowane z wykorzystaniem różnorodnych materiałów inteligentnych, które działają jako czujniki i/lub siłowniki, co pozwala na szybkie dostosowanie sterowania do zmieniających się warunków pracy sterowanego układu. Najczęściej stosowane materiały piezoelektryczne są wbudowywane w konstrukcję łopaty jako moduły z piezosiłownikami lub piezokompozyty. W zależności od sposobu zabudowy wielkością sterowaną jest kąt wychylenia klapki lub odkształcanie segmentu łopaty w celu zmiany jego kąt skręcenia. W zależności od miejsca zamocowania materiałów inteligentnych aktywne sterowanie dotyczy całej łopaty lub tylko jej zewnętrznej części.
Rocznik
Strony
164--180
Opis fizyczny
Bibliogr. 116 poz., rys.,schem.,wzory
Twórcy
autor
autor
autor
  • Instytut Lotnictwa, 02-256 Warszawa, Al. Krakowska 110/114
Bibliografia
  • [1] Szabelski K., Jancelewicz B., Łucjanem W.: Wstęp do konstrukcji śmigłowców. WKiŁ. Warszawa 1995.
  • [2] Johnson W.: Helikopter Theory. Princeton University Press, 1980.
  • [3] Bramwell A. R. S.: Helicopter Dynamics. Edward Arnold, London, 1976.
  • [4] Prouty R. W.: Helicopter Performance, stability and Control. PWS Engineering, Boston, 1986.
  • [5] Reichert G., Huber H.: Active Control of Helicopter Vibration Fourth Workshop on Dynamic and Aeroelastic Stability Modeling of Rotorcraft Systems, University of Maryland, College Park, Maryland, November 19-21, 1991.
  • [6] Friedmann P. P.: Rotary-Wing Aeroservoelastic Problems. AIAA Paper 91-121070, 1992.
  • [7] Friedmann P. P.: Vibration reduction in Rotorcraft Using Active Control: A Comparison of Various Approaches. AIAA Journal of Guidance, Control and Dynamics, Vol. 18, No 4, July-August 1995.
  • [8] De Vivo L., Concilio A.: Active Control on Typical Helicopter Panels by Using Piezo-Actuators. ICAS 1996, Sorrento, Italy.
  • [9] Lockyer A. J., Kudva J. N., Kane D. M., Hill B. P., Martin C. A.: A Qualitative of Smart Skins and Avionics Structures Integration. SPIE Vol. 2189, 1994.
  • [10] Staple A. E., Wells D. M.: The Development of an Active Control of Structural Response System for EH 101 Helicopter. Paper No. 111.6.1.1., 16th European Rotorcraft Forum, Glasgow, UK, September 1990.
  • [11] Kloppel T. D., Richter P.: Development of Active Control Technology in the Rotating System, Flight Testing and theoretical Investigations. Paper No. 89, 1-06, 18th European Rotorcraft Forum, Avignon, France, September 15-18, 1992.
  • [12] Nitzsche F.: A New Individual Blade Control Approach to Attenuate Rotor Vibration. 22nd European Rotorcraft Forum, Brighton, UK, September 1996.
  • [13] Nitzsche F., Breitbach E.: The Smart Structures Technology in the Vibration Control of Helicopter Blades in Forward Flight. First European Conference on Smart Structures and Materials, Glasgow, UK, 1992.
  • [14] Tylikowski A.: Stabilisation of Beam Parametric Vibrations. Journal of Theoretical and Applied Mechanics, 3, 31, 1993.
  • [15] Wereley N. M.: Active Damping of Flexible Rotor Blades Using ER Fluid based Actuators. SPIE North American Conference on Smart Structures and Materials, Orlando, FL, USA, Vol. 2190, pp. 13-18, February 1994.
  • [16] Kamath G. M., Wereley N. M.: Distributed Damping of Rotorcraft Flex beams Using Electrorheological Fluids. AIAA-95-1082-CP, AIAA/ASME Adaptive Structures Forum, New Orleans, LA, USA, April 1995.
  • [17] Rotor & Wing. May 1996.
  • [18] Aviation Week & Space technology, April 15, 1996.
  • [19] Chattopadhyay A., Seely C. E.: Multiobjective Optimization Procedure for the Design of Rotating Composite Box Beams with Discrete Piezoelectric Actuators. SPIE Conference on Smart Structures and Intelligent Systems, Vol. 2190, 1994.
  • [20] Chopra I.: Development of Smart Rotor. Paper No. N6, 19th European Rotorcraft Forum, Cernobbio (Como), Italy, September 14-16, 1993.
  • [21] Chopra I.: Status of Application of Smart Structures Technology to Rotorcraft Systems. Proceedings of innovation in Rotorcraft Technology, Royal Aeronautical Society, May 1997.
  • [22] Prasad J. V. R., Sankar L. N., Park W. G., Orban J. E.: Active Control of Rotor Noise. SPIE Vol. 1917, Smart Structures and Intelligent Systems, 1993.
  • [23] Hanagud S., Roglin R. L., Nagesh Babu G. L.: Smart Airfoils for Helicopter Control. Paper No. 119 (1404), 18th European Rotorcraft Forum, Avignon, France, September 15-18, 1992.
  • [24] Geissler W., Raffel M.: Dynamic Stall Control by Airfoil Deformation. Paper No. Cl, 19th European Rotorcraft Forum, Cernobbio (Como), Italy, September 14-16, 1993.
  • [25] Roglin R. L., Hanagud S.: A helicopter with Adaptive Rotor with Tip Mounted Active Flaps. 50th American Helicopter Society Forum, 1994.
  • [26] Dawson S., Straub F.: Design, Validation and Test of a Model Rotor with tip Mounted Active Flaps. 50thAmerican Helicopter Society Forum, 1994.
  • [27] Dawson S., Marcolini M., Booth E., Straub F.: Wind Tunnel Test of an Active Flap Rotor: BVI Noise and Vibration Reduction. 51st American Helicopter Society Forum, Fort Worth, TX, USA, May 9-11, 1995.
  • [28] Straub F. K.: Active Flap Control for Vibration Reduction and performance Improvement. 51st American Helicopter Society Forum, Fort Worth, TX, USA, 9-11, 1995.
  • [29] Charles B., Tadghighi H., Hassan A.: Higher Harmonic Actuation of Trailing-Edge Flaps for Rotor B Noise Control. 52nd American Helicopter Society Forum, Washington, DC, USA, June 4-6, 1996.
  • [30] Straub F. K., Hassan A. A.: Aeromechanic Considerations in the Design of a Rotor with Smart Material Actuated Trailing Edge Flaps. 52nd American Helicopter Society Forum, Washington, DC, USA, June 4-6, 1996.
  • [31] Millot T. A., Friedmann P. P.: Vibration Reduction in Helicopter Rotors Using an Active Control Surface Located on the Blade. AIAA-92-2451-CP, 33rd AIAA/ASME/AHS/ASC Structures, Structural Dynamics and Material Conference, Dallas, TX, USA, April 13-15, 1992.
  • [32] Millot T. A., Friedmann P. P.: The Practical Implementation of an. Actively Controlled Flap to Reduce Vibrations in Helicopter Rotors. pp. 1079-1092, American Helicopter Society Forum, St. Louis, MO, USA, May 1993.
  • [33] Millot T. A., Friedmann P. P.: Vibration Reduction in Hingeless Rotors Using an Actively Controlled Trailing Edge Flap: Implementation and Time Domain Simulation. AIAA-94-1306-CP, 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference, Dallas, TX, USA, April 1994.
  • [34] Narkiewicz J., Ling A., Done G. T. S.: Unsteady Aerodynamic Loads on an Aerofoil with a Deflecting Tab. Aeronautical Journal, Vol. 99, No. 987, pp. 282-292, September/October 1995.
  • [35] Yillikci Y. K., Hanagud S., Aygun C., Karamisir T.: Modeling Nonlinear Response of Hingeless Rotor Blades With Flaps Controls. 22nd European Rotorcraft Forum, Brighton, UK, September 1996.
  • [36] Yillikci Y. K., Hanagud S.: An Initial Evaluation Blade Dynamics of a Stopped/Flipped Rotor with Flap Controls. Paper No. D15, 19th European Rotorcraft Forum, Cernobbio (Como), Italy, September 14-16, 1993.
  • [37] Roglin R. L., Hanagud S., Peters D. A., Chattopadhyay A.: Optimization of the Twist Distribution Using an Adaptive Airfoil. 52nd American Helicopter Society Forum, Washington, DC, USA, June 4-6, 1996.
  • [38] Loewy R. G., Tseng S. P.: Tests of an Unstable Lifting Surface Stabilized by a Simulated Smart Structure. Presentation at 6th International Workshop Dynamics and Aeroelastic Stability Modeling Rotorcraft Systems, November 8-10, 1995.
  • [39] Spangler R. L. Jr, Hall S. R.: Piezoelectric Actuators for Helicopter Rotor Control. AIAA-90-1076-CP, Part 3, pp. 1589-1599, 31 st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference, Long Beach, CA, USA, April 2-4, 1990.
  • [40] Ben-Zeev O., Chopra I.: Advances in the Development of an Intelligent Helicopter Rotor Employing Smart Trailing-Edge Flaps. Smart Materials and Structures, Vol. 5, No 1, pp. 11-25, February 1996.
  • [41] Samak D. K., Chopra I.: Design of High Force, High Displacement Actuators for Helicopter Rotor. SPIE Conference on Smart Structures and Intelligent Systems, Vol. 2190, 1994, Smart Materials and Structures, Vol. 5, No 1, pp. 58-67, February 1996.
  • [42] Straub F. K., Merkley D. J.: Design of a Servo-Flap Rotor for Reduced Control Loads. Smart Materials and Structures, Vol. 5, No 1, pp. 68-75, February 1995.
  • [43] Giurgiutiu V., Chaudhry Z., Rogers C. A.: Engineering Feasibility of Induced Strain Actuators for Rotor Blade Active Vibration ControL SPIE Vol. 2190, Journal of Intelligent Materials Systems and Structures, Vol. 6, September 1995.
  • [44] Narkiewicz J.: Sterowanie dodatkowe wiropłatów przy wykorzystaniu koncepcji układów inteligentnych. Zeszyty Naukowe Politechniki Warszawskiej, Seria Mechanika, Zeszyt Nr 169, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1998.
  • [45] Petitniot J-L., des Rochettes H-M., Leconte P.: Experimental Assessment and Further Development of Amplified Piezo Actuators for Active Flap Devices. Paper No. B 3.4, ACTUATOR 2002, 8th International Conference on New Actuators, Bremen, Germany, June 10-12, 2002.
  • [46] des Rochettes H-M., Leconte P.: Experimental assessment of an active flap device. 58th American Helicopter Society Forum, Montrnal, Quebec, Canada, June 11-13, 2002.
  • [47] Kloeppel V., Enenkl B.: Rotor Blade Control by Active Helicopter Servo Flaps. International Forum on Aeroelasticity and Structural Dynamics 2005, Muenchen, Germany, June 28 - July 01, 2005.
  • [48] CEDRAT TECHNOLOGIES, www.cedrat.com,
  • [49] Dynamic Structures & Materials, www.dynamic-structures.com
  • [50] Physik Instrumente, www.pi.ws.
  • [51] EDO Corporation, www.edoceramic.com
  • [52] Material Systems Inc., www.matsysinc.com
  • [53] Morgan Matroc (Morgan Electro Ceramics), www.morganelectroceramics.com .
  • [54] Piezo Systems Inc., www.piezo.com.
  • [55] Miller M.: The State of Art in Helicopter Active Control Systems. Report No. 207/BA/05/D, December 2005.
  • [56] Wikipedia, www.wikipedia.com.
  • [57] Nitinol Devices & Components, www.nitinol.com.
  • [58] Johnson Matthey, www.jmmedical.com.
  • [59] MIDE Technology Corporation, www.mide.com.
  • [60] Duerig T. W., Melton K. N., Steckel D., Wayman C. M.: Engineering Aspects of Shape Memory Alloys. ISBN 0-750-61009-3, London, Butterworth Heinemann, 1990.
  • [61] Miller M.: The Application of Shape Memory Alloys in Helicopters. Report No. 210/BA/06/D, August 2006.
  • [62] Chopra I.: Recent Progress on the Development of a Smart Rotor System. 26th European Rotorcraft Forum, the Hague, the Netherlands, September 2000.
  • [63] Chen P. C., Chopra I.: Induced Strain Actuation of Composite Beams and Rotor Blades with Embedded Piezoceramic Elements. Smart Materials and Structures, Vol. 5, No 1, pp. 35-48, February 1996.
  • [64] Chen P. C., Chopra I.: Hover Testing of Smart Rotor with Induced-Strain Actuation of Blade Twist. AIAA Journal, Vol. 35, No 1, pp. 6-16, January 1997.
  • [65] Chen P. C., Chopra I.: Wind Tunnel Test of a Smart Rotor with Individual Blade Twist ControL Journal of Intelligent Material Systems and Structures, Vol. 8, No 5, pp. 414-425, May 1997.
  • [66] Gentilman R., McNeal K., Schmidt G., Pizzochero A., Rossetti G. A. Jr.: Enhanced performance active fiber composites. SPIE 10th International Symposium on Smart Structures and Materials, March 2003.
  • [67] Rodgers J. P., Hagood N. W.: Design and Manufacture of an Integral Twist-Actuated Rotor Blade. Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Adaptive Structures Forum, Kissimmee, FL, USA, April 1997.
  • [68] Derham R. C., Hagood N. W.: Rotor Design Using Smart Materials to Actively Twist Blades. 52nd American Helicopter Society Forum, Washington, DC, USA, June 4-6, 1996.
  • [69] Rodgers J. P., Hagood N. W.: Preliminary Mach-Scale Hover Testing of an Integral Twist-Actuated Rotor Blade. Proceedings of the 1997 SPIE’s North American Symposium on Smart Structures and Materials, San Diego, CA, USA, March 1997.
  • [70] Rodgers J. P., Hagood N. W.: Development of an Integral Twist-Actuated Rotor Blade for Individual Blade Control. MIT ASML 98-6, October 1998.
  • [71] Koratkar N., Chopra I.: Analysis and Testing of Mach Scaled Rotor Model with Piezoelectric Bender Actuated Trailing-Edge Flaps for Helicopter Vibration Control. Proceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Adaptive Structures Forum, St. Louis, MO, USA, April 1999.
  • [72] Koratkar N. A., Chopra I.: Analysis and Testing of Froude Scaled Helicopter Rotor with Piezoelectric Bender Actuated Trailing Edge Flaps. Journal of Intelligent Material Systems and Structures, Vol. 8, pp. 555-570, July 1997.
  • [73] Koratkar N. A., Chopra I.: Design, Fabrication and Testing of a Mach Scaled Rotor Model with Trailing-Edge Flaps. 55th American Helicopter Society Forum, Montreal, Quebec, Canada, May 1999.
  • [74] Koratkar N. A., Chopra I.: Wind Tunnel Testing of a Mach Scaled Rotor Model with Trailing-Edge Flaps. 56th American Helicopter Society Forum, Virginia Beach, VA, USA, May 2000.
  • [75] Hall S. R., Prechtl E. F.: Development of a Piezoelectric Servoflap for Helicopter Rotor ControL Smart Materials and Structures, Vol. 5, No 1, pp. 26-34, February 1996.
  • [76] Fulton M. V., Ormiston R. A.: Small-Scale Rotor Experiments with On-Blade Elevons to Reduce Blade Vibratory Loads in Forward Flight 54th American Helicopter Society Forum, Washington, DC, USA, May 1998.
  • [77] Spencer B., Chopra I.: Advances in the Development of an Intelligent Helicopter Rotor Employing Smart Trailing-Edge Flaps. Proceedings of the 1996 SPIE’s North American Symposium on Smart Structures and Materials, San Diego, CA, USA, February 1996.
  • [78] Chandra R., Chopra I.: Actuation of Trailing Edge Flap in Wing Model Using Piezostack Device. Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Adaptive Structures Forum, Kissimmee, FL, USA, April 1997.
  • [79] Lee T., Chopra I.: Design and Spin Testing of Active Trailing Edge Flap Actuated Piezostacks. Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit, St. Louis, MO, USA, April 1999.
  • [80] Lee T., Chopra I.: Development and Validation of a Refined Piezostack-Actuated Trailing Edge Flap Actuator for a Helicopter Rotor. Proceedings of the 1999 SPIE’s North American Symposium on Smart Structures and Materials, Newport Beach, CA, USA, March 1999.
  • [81] Lee T., Chopra I.: High Displacement Piezoelectric Trailing-Edge Flap Mechanism for Helicopter Rotors. Ph. D. Dissertation, University of Maryland, College Park, MD, USA, December 1999.
  • [82] Straub F. K., King R. J.: Application of Smart Materials to Control of a Helicopter Rotor. Proceedings of the 1996 SPIE’s North American Symposium on Smart Structures and Materials, San Diego, CA, USA, February 1996.
  • [83] Straub F. K., Ngo H. T., Anand V., Domzalski D. B.: Development of a Piezoelectric Actuator for Trailing Edge Flap Control of Rotor Blades. Proceedings of the 1999 SPIE’s North American Symposium on Smart Structures and Materials, Newport Beach, CA, USA, March 1999.
  • [84] Prechtl E. F., Hall S. R.: Design of a High-Efficiency Discrete Servo-Flap Actuator for helicopter Rotor Control. Proceedings of the 1997 SPIE’s North American Symposium on Smart Structures and Materials, San Diego, CA, USA, March 1997.
  • [85] Hall S. R., Prechtl E. F.: Preliminary Testing of a Mach-Scaled Active Rotor Blade with a trailing-Edge Servo-Flap. Proceedings of the 1999 SPIE’s North American Symposium on Smart Structures and Materials, Newport Beach, CA, USA, March 1999.
  • [86] Schimke D., Janker V., Blaas A., Kube R., Kessler C.:Individual Blade Control by Servo-Flap and Blade Root Control, A Collaborative Research and Development Programme. 23rd European Rotorcraft Forum, Dresden, Germany, September 1997.
  • [87] Schimke D., Janker V., Wendt V., Junker B., Wind Tunnel Evaluation of a Full Scale Piezoelectric Flap Control Unit. 24th European Rotorcraft Forum, Marseille, France, September 1998.
  • [88] Shaner M.: Active Blade Leading-Edge Droop with Piezostack for High Speed Noise Suppression. MSc Thesis, University of Maryland, College Park, MD, USA, January 2000.
  • [89] Janker P, Kloppel V., Hermle T., Lorkowski T., Storm S., Christmann M., Wettemann A.: Development and Evaluation of a Hybrid Piezoelectric Actuator for Advanced Flap Control Technology. 25th European Rotorcraft Forum, Rome, Italy, September 1999.
  • [90] Chandra R., Chopra I.: Structural Response Composite Beams and Blades with Elastic Couplings. Composite Engineering, Vol. 2, No 5, 347-374, 1992.
  • [91] Bothwell C. M., Chandra R., Chopra I.: Torsional Actuation with Extension-Torsional Composite Coupling and magnetostrictive Actuators. AIAA Journal, Vol. 33, No 4, pp. 723-729, April 1995.
  • [92] Bernhard A., Chopra I.: Trailing Edge Flap Activated by a Piezo-Inducted Bending-Torsion Coupled Beam. Journal of the American Helicopter Society, Vol. 44, No 1, pp. 3-15, January 1999.
  • [93] Bernhard A., Chopra I.: Development of a Smart Moving Blade Tip Activated by a Piezo-Inducted Bending-Torsion Coupled beam. 53rd American Helicopter Society Forum, Virginia Beach, VA, USA, May 1997.
  • [94] Bernhard A., Chopra I.: Mach-Scale Design a Rotor-Model with Active Blade Tip. 55th American Helicopter Society Forum, Montreal, Quebec, Canada, May 1999.
  • [95] Bernhard A.: Smart Helicopter Rotor with Active Blade Tips (SART). Ph.D. Dissertation, Aerospace Engineering, University of Maryland, College Park, MD, USA, March 2000.
  • [96] Epps J. J., Chopra I.: Comparative Evaluation of Shape Memory Alloy Constitutive models with Test Data. Proceedings of the 38th AIAA/ASME//ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Adaptive Structures Forum, Kissimmee, FL, USA, April 1997.
  • [97] Tanaka K.: Termomechanical Sketch of Shape Memory Effect: One-Demensional Tensoile Behaviour. Res. Mechanica, Vol. 18, pp. 251-263, 1986.
  • [98] Liang C., Rogers C. A.: One-Demensional Thermomechanical Constitutive Relations for Skape Memory Material. Journal of Intelligent Materials and Structures, Vol. 1, pp. 207-234, April 1990.
  • [99] Brinson L. C.: One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermo-mechanical Derivation with Non-Constant material Functions. Journal of Intelligent Material Systems and Structures Vol. 4, No 2, p. 229-242, 1993.
  • [100] Boyd J. G., Lagoudas D. C.: A Thermodynamic Constitutive Model for the Shape Memory Materials. Part I. The Monolithic Shape memory Alloys. International Journal of Plasticity, Vol. 12, No pp. 805-842, 1996.
  • [101] Prahlad H., Chopra I.: Experimental Characterization of Ni-Ti Shape memory Alloy Wires under Complex Loading Conditions. Proceedings of the 1999 SPIE’s North American Symposium on Smart Structures and Materials, Newport Beach, CA, USA, March 1999.
  • [102] Rogers C. A., Liang C., Jia J.: Behavior of Shape memory Alloy Reinforced Composite Plates , part L Model Formulations and Control Concepts. Proceedings of the 30th AIAA/ASME/ASCE/AHS//ASC Structures, Structural Dynamics and Materials Conference, Washington D.C., USA, April 1989.
  • [103] Rogers C. A., Liang C., Jia J.: Behavior of Shape Memory Alloy Reinforced Composite Plates, Part II: Results. Proceedings of the 30th AIAA/ASME/ASCE//AHS/ASC Structures, Structural Dynamics and Materials Conference, Washington D. C., USA, April 1989.
  • [104] Rogers C. A., Barker D. K.: Experimental Studies of Active Strain Energy Tuning of Adaptive Composities. Proceedings of the 31st AIAA/ASME/ASCE//AHS/ASC Structures, Structural Dynamics and Materials Conference, Washington D. C., USA, April 1990.
  • [105] Baz A., Imam K., McCoy J.: Active Vibration Control of Flexible Beams Using Shape Memory Actuators. Journal of Sound and Vibration, Vol. 140 (3), pp. 437-456, 1990.
  • [106] Baz A., Ro S.: Thermo-Dynamic Characteristics of Nitinol-Reinforced Composite Beams. Composite Engineering, Vol. 2, No 5-7, pp. 527-542, 1992.
  • [107] Epps J. J., Chandra R.: Shape Memory Alloy Actuation for Active Tuning of Composite Beams. Proceedings of the 1995 SPIE’s North American Symposium on Smart Structures and Materials, San Diego, CA, USA, February 1995.
  • [108] Epps J. J., Chandra R.: Shape Memory Alloy Actuation for Active Tuning of Composite Shafts. Proceedings of the 1996 SPIE’s North American Symposium on Smart Structures and Materials, San Diego, CA, USA, February 1996.
  • [109] Liang C., Schroeder S., Davidson F. M.: Applications of Torsion Shape memory Alloy Actuator for Active Rotor Blade Control Opportunities and Limitations. Proceedings of the 1996 SPIE’s North American Symposium on Smart Structures and Materials, San Diego, CA, USA, February 1996.
  • [110] Kudva J. et al.: Overviev of the DARPA/AFRL/NASA Smart Wing Program. Proceedings of the 1999 SPIE’s North American Symposium on Smart Structures and Materials, Newport Beach, CA, USA, March 1999.
  • [111] Roglin R. L., hanagud S. V.: A helicopter with Adaptive rotor Blades for Collective Control. Smart Materials and Structures, Vol. 5, No 1, pp. 1-10, February 1995.
  • [112] Straub F. K., Ealey M. A., Schetky L. McD.: Application of Smart materials to helicopter Active Control. Proceedings of the 1997 SPIE’s North American Symposium on Smart Structures and Materials, San Diego, CA, USA, March 1997.
  • [113] Epps J. J., Chopra I.: Shape Memory Alloy Actuators for In Flight Tracking of Helicopter Rotor Blades. Proceedings of the 1998 SPIE’s North American Symposium on Smart Structures and Materials, San Diego, CA, USA, March 1998.
  • [114] Epps J. J., Chopra I.: In-Flight Tracking of Helicopter Rotor Blades Using Shape Memory Alloy Actuators. Proceedings of the 40th AIAA /ASME//ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Adaptive Structures Forum, St. Louis, MO, USA, April 1999.
  • [115] Epps J. J., Chopra I.: Methodology of In-Flight Tracking of Helicopter Rotor Blades Using Shape memory Alloy Actuators. 55th American Helicopter Society Forum, Virginia Beach, VA, USA, May 1999.
  • [116] Epps J. J.: In-Flight Tracking of helicopter Rotor Blades with Tabs actuated with Shape Memory Alloy Actuators. Ph. D. Dissertation, Aerospace Engineering, University of Maryland, MD, USA, February 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW4-0033-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.