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Abstract

In this article we focus on image representation using Content Adaptive
Mesh Models (CAMM). We discuss the idea of image representation using
the triangular mesh and limitations of this method. The performance of the
method is evaluated with two sample images representative for biomedical
applications: brain reconstruction from Positron Emission Tomography
(PET) scanner and Shepp-Logan head phantom. The conclusion is that the
CAMM approach may be very effective representation for image
reconstruction, but the current version of the algorithm is inappropriate for
very low contrast data, such as the Shepp-Logan phantom. The main
conclusion is that the node placement scheme should be corrected to
prevent excess concentration of nodes in unimportant regions of high
contrast and shortage of nodes in low-contrast parts of the image. It is
postulated that contrast stretching could be a possible solution to that
limitation.
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O zastosowaniu adaptacyjnych modeli
siatkowych do reprezentacji obrazu

Streszczenie

W artykule opisano zastosowanie reprezentacji obrazu w postaci
adaptujacej si¢ do jego zawartosci siatki elementow trdjkatnych (ang.
Content Adaptive Mesh Models — CAMM). Przeanalizowano skutecznosé
takiego podejscia i ograniczenia metody na przyktadzie dwoch obrazow
testowych, typowych dla zastosowan biomedycznych: rekonstrukcji skanu
moézgu z wykorzystaniem tomografii emisyjnej (PET) oraz tzw. fantomu
Sheppa-Logana. Na podstawie uzyskanych wynikéw wnioskuje sig, ze
wykorzystanie siatki elementow trojkatnych moze by¢ bardzo efektywnym
sposobem reprezentacji obrazu, jednak w swojej obecnej wersji algorytm
nie sprawdza si¢ w przypadkach w ktorych najistotniejsza czgsé obrazu
cechuje si¢ niskim kontrastem. Zasugerowano zastosowanie kompresji
kontrastu w celu przezwycigzenia tego ograniczenia.

Slowa kluczowe: reprezentacja obrazu, generacja siatek, probkowanie
nieréwnomierne

1. Introduction

An effective image representation plays an important role in
many applications which process graphical information. A way
the image is represented in the computers memory greatly
influences the performance of the image processing algorithm. It
also determines the amount of memory used for storage of the
image.

In image reconstruction from projections, which is the main
field of our investigations, the image (or volume) can be simply
represented using pixels (2D) or voxels (3D) [1]. This is the most
intuitive approach for image representation. However, it does not
fulfill the requirements of image reconstruction algorithms due to
the following reasons. Firstly, the projection value of the
rectangular (cubic) image element depends on the angular
orientation.

This makes the pixels not suitable for the considered task since the
projections are oriented around the object at different angle.
Secondly, the frequency response of the rectangular window has
worse properties compared to the frequency responses of other
interpolation kernels, such as bilinear or Gaussian [2]. This causes
a high level of noise in the images reconstructed with pixel based
algorithms.

More sophisticated way of representing the image is using basis
functions [2]. The basis functions can be of two different kinds —
radially symmetric or piecewise polynomial. The great advantage
of the radially symmetric basis functions is that their projection
value is independent of the angular orientation. The most popular
radially symmetric basis function recently utilized in tomography
is based on the Bessel-Kaiser function [3]. This basis function is
often called blob. Utilizing blobs has shown to give more accurate
reconstructions with lower level of noise. The advantage of blobs
is that their bandwidth can be easily changed by determining one
parameter. Appropriate setting of this parameter allows optimal
reconstruction in terms of noise suppression - contrast recovery
trade off [4].

Blobs, however, have one disadvantage. Image reconstruction
from projections can be perceived as solving the system of linear
equations. The unknown are the image values whereas the known
are the measured projection values. The transient matrix of that
system describes the contribution of the image element to each
particular projection value. Using blobs increases the
computational demands because the transient matrix is less sparse
due to overlapping nature of blobs.

There are alternative ways of making the transient matrix
sparser, which have been described in the literature. One of the
solutions is using content adaptive mesh model [5] instead of
uniform sampling. The local frequency content in an image varies
spatially (image signals are spatially nonstationary). Taking this
into account the employment of nonuniform sampling seems to be
an efficient way of representing the image. Therefore, the second
approach seems to have great potential for the development of
efficient image reconstruction algorithms.

The mesh representation has been shown useful in other areas
of image processing. It has been recently used for tracking of
image sequences [6]. It has been applied to image compression [7]
as well as image interpolation [8]. Even though, this work is
dedicated to the analysis of content adaptive mesh model from the
point of view of its usefulness in tomographic reconstruction the
results presented here are (to some extent) valid in other fields.

2. Methods

In mesh-based model of the image, the data are represented as
a set of intensity values of known points, called nodes. The nodes
are connected together forming the mesh of image elements. The
value of arbitrarily chosen image sample is interpolated from the
nodal values of its corresponding element using a set of functions
(called shape functions) associated with the element. This concept
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is taken directly from the numerical method of solving partial
differential equations (PDE’s) called finite elements method
(FEM). Therefore, additional information concerning the mesh
construction may be found in appropriate popular FEM literature,
e.g. [9]. Another loose analogy between FEM and CAMM can be
made: in both methods partitioning of the problem domain allows
simplification of computations. For PDE’s it transforms
a differential equation into the limited set of algebraic equations.
In tomographic reconstruction tasks, the use of CAMM simplifies
and speeds up the reconstruction algorithm [5], since all the
computations are performed only for nodal values.

In mesh model, the sought function f{x) (where x denotes 2-D or
3-D vector) is interpolated over each element using the values of
the relevant nodes [10]:

fm=ﬁﬂm%m) M

where: N — number of nodes in the element, ¢; — shape function
associated with i-th node, x; — value of f in i-th node.

The interpolating functions are called shape functions. For any
point x (vector in two or three dimensional space):
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The shape functions values in the nodes fulfill the following
property:
1 for i—th node

@m={ ®

0 elsewhere

For 2-D triangular elements with linear interpolation (see figure 1)
the shape functions are defined as follows [9]:
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where A denotes the area of the element. Figure 1 presents the
schematic view of a single element and its mapping back into the
pixel domain (used for displaying the interpolated solution). The
quality of the approximation depends on a measure called element
quality. In general, the closer to the equilateral is the triangle, the
better is the approximation.
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Fig. 1.  The schematic view of a single element and its mapping back into the
pixel domain

The first step conducted during mesh construction is the
determination of the feature map. The feature map is an image
obtained from the original image using a transformation which
should detect significant features and surpass regions that contain
less detail. As proposed by Yang et al [10] the feature map serves
as a measure of the high frequency content in the particular area of
the image. Such situation is further discussed using an example of
biomedical imaging data, i.e. PET brain scan. The most significant
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information in that image - the presence of a tumor may have
much lower contrast values than object boundaries and
measurement noise. Another example considered here will be the
Shepp-Logan phantom, in which most of the structures are of low
contrast. In figure 3 the contrast has been increased for
presentation purposes. In terms of grayscale values, the dots in the
middle of the ellipse differ from the background by only 1%.
According to [10] the feature map o(x) is computed as follows:

o{x)z{nwx( ]}7 )

where the parameter y > 0 is used to adjust the sensitivity of the
output image for edges in the input image. It is also claimed that
the input image should be initially filtered using lowpass filter.
Computation of directional derivatives involves using digital
approximation of differentiation [10].

The feature map obtained in a way described above was used
for determining the location of the nodes of triangular mesh. The
number of nodes may be determined arbitrarily (considering the
size of the image) or using statistical measure, as presented in
[10]. In this paper it was assumed that the number of nodes should
be equal to 5% of the number of pixels in the image.

The nodes were placed using Floyd-Steinberg (FS) dithering
algorithm [11] with thresholding (to ensure given number of
nodes). The algorithm originates from computer graphics. It is
based on error dispersion. For any pixel in the image it finds the
closest available color (e.g. black or white for 2-color dithering),
and computes the difference between found color and original
image. This difference is dispersed among the neighboring pixels
according to given mask of weights. In cited works on CAMM it
was used to determine the placement of mesh nodes. When the
value of a pixel in the output image of FS algorithm exceeded
assumed threshold, that pixel was chosen to be a mesh node.

The reconstruction accuracy was assessed using Peak Signal To
Noise Ratio (PSNR) [10], defined as:
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where the denominator denotes vector norm of difference between
original and reconstructed image.

3. Results

The CAMM models of two images typical for medical
applications were created. The first one was a reconstruction from
an 18F-fluoro deoxyglucose brain scan. The data were obtained
using ECAT EXACT HR (Siemens/CTI, Knoxville, TN) Positron
Emission Tomography (PET) scanner. The results are presented in
figure 2. The plot a) is the original image in the pixel domain. Plot
b) contains the location of the mesh nodes, obtained using the
Floyd-Steinberg algorithm. Plot c) presents the triangular mesh,
whereas the plot d) shows the image after conversion back into the
pixel domain. It is clearly visible, that the mesh representation acts
like a lossy compression — it suppresses small, low-contrast
details. If these are only the effects of measurement noise (like in
case of figure 2), all the important data are preserved.

For the image presented in figure 2, obtained PSNR equaled
55.54 dB. This value represents only the distortion introduced by
the triangular representation. Any operations performed in
triangular mesh domain would additionally decrease this value,
introducing further errors.

However, there might be some situations when the small, low-
contrast objects play crucial role during the diagnostic process.
Popular artificial dataset representing such a case is called Shepp-
Logan phantom. Figure 3 shows the mesh model and
reconstructions for Shepp-Logan phantom, obtained analogously
like in case of brain image.
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Fig. 2.  Representation of PET brain reconstruction using triangular elements :
a) tomographic reconstruction using Filtered Backprojection Algorithm;
b) node placement; ¢) mesh structure; d) pixel reconstruction from the
CAMM model

Fig. 3. Representation of Shepp-Logan phantom using triangular elements :
a) original image; b) node placement; ¢) mesh structure; d) pixel
reconstruction from the CAMM model

In both cases the number of nodes equaled to 5% of the total
number of pixels in the input image. The ratio of PSNR measure
for both images was summarized in table 1. The results suggest
that the algorithm performed better for the Shepp-Logan phantom
than for the brain image.

Tab. 1. Comparison of the PSNR ratio for both images

whole image area ROI (31x31 pixels)

PET brain 55dB 39dB

Shepp-Logan Phantom 67 dB 84 dB

However, the visual analysis of the image suggests contrary
conclusion. Analysis of the plot 3c) explained the fact of the
suppression of the details. The node-placement algorithm has put
all the nodes on the boundary of the outer ellipse, since it produces
the largest value of the feature map (due to high contrast).
Relatively few nodes were placed in the interior area. This
happened because of the low contrast values of the inclusions. The
most significant regions of the image lie inside the triangles, and
are therefore approximated by the linear functions. They loose
their local character, being “smeared” all over the area of such
a triangle. On the other hand, the PSNR measure is immune to the
real significance of the image regions. Loosing the low contrast
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values (diagnostically important) does not lower the PSNR results
as much as losing the high contrast parts (even if they are only the
effect of noise). Therefore, another quality measure should be
constructed for the images having similar character. Another
problem is the triangle quality. The approximation of the inner
values is the better; the more equilateral is the triangle [9]. The
algorithm proposed by Yang et al [10] does not control this
feature. Certain images may result in acceptable meshes, whereas
the others may appear analogous to the Shepp-Logan case —
contain many low quality elements. This error of approximation is
added to the overall representation error. It would be advisable, if
the algorithm could insert additional nodes when necessary and
control the mesh quality.

4. Conclusions and future work

The CAMM model was analyzed in the paper. For both brain
reconstruction and Shepp-Logan phantom their feature maps and
Content Adaptive Mesh Models were created. Then the images
were converted back into the pixel domain. The results were
assessed using both numerical measure (PSNR) and visual
inspection. The CAMM approach appeared successful for the
brain image, due to the fact that it does not contain very low-
contrast content of great significance. On the other hand, the mesh
representation of the Shepp-Logan phantom looses crucial image
elements. Additionally, it is not reflected in the numerical quality
measure. The main conclusion is that the either CAMM approach
should not be used for images with low-contrast regions of
interest, or the node placement scheme should be corrected to
prevent excess concentration of nodes in unimportant regions of
high contrast and shortage of nodes in low-contrast parts of the
image. It is postulated that contrast stretching could be a possible
problem to that limitation. This is a matter of future studies.
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