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Abstract

Using ordered subsets is an efficient way of accelerating iterative
image reconstruction techniques. Ordered Subsets — Expectation
Maximization (OS-EM) is recently a very popular reconstruction
method and is incorporated into many imaging systems particular-
ly in emission tomography. Compared to the most popular recon-
struction algorithm — Filtered Backprojection (FBP), it is more
computationally demanding but in many cases it outperforms FBP
in terms of image quality. This work aimed at increasing a rate of
convergence and accuracy of the OS-EM as well as reducing its
overall computational cost. This was achieved by utilizing the we-
ighted distance projection access scheme originally proposed for
ART and using spherically symmetric image elements (blobs) for
image representation. Evaluation based on synthetic projection da-
ta showed the improvement of the image quality of the obtained
reconstructions and increase in the convergence speed.

Streszczenie

Uzycie uporzadkowanych podzbioréw rzutdw jest wydajnym spo-
sobem przyspieszania iteracyjnych technik rekonstrukeji obrazéw.
Metoda maksymalizacji wartosci oczekiwanej z uporzadkowanymi
podzbiorami projekeji (OS-EM) jest obecnie bardzo popularnym
algorytmem rekonstrukeji i jest stosowana w wielu systemach ob-
razowania, zwlaszcza w tomografii emisyjnej. W pordéwnaniu do
najbardziej popularnego algorytmu — wstecznej projekcji filtrowanych
rzutéw (FBP), OS-EM jest bardziej wymagajacy obliczeniowo, ale
w wielu przypadkach przewyzsza FBP w kategoriach jakosci obra-
zu. Celem pracy byto zwigkszenie zbieznosci oraz doktadnosci me-
tody OS-EM, a takze zredukowanie jej ztozonosci obliczeniowe;.
Zostalo to osiagnigte poprzez uzycie schematu dostepu do rzutéw
z wazonym dystansem (WDS) oryginalnie zaproponowanym dla
metody ART oraz uzycie sferycznie symetrycznych elementéw ob-
razu (blobéw) do reprezentacji obrazu. Ocena bazujaca na symu-
lowanych rzutach wykazala poprawe jakosci uzyskanych rekon-
strukcji oraz przyspieszenie zbieznoéci algorytmu.

| Introduction

Image reconstruction from projections (IRP) is an interdisciplina-
ry field of research combining variety of subjects. The design and
implementation of image reconstruction algorithms involve tech-
niques from electrical engineering (particularly, signal processing),
computer science (data structures, software engineering), physics
(modeling of radiation transport and detection processes), mathe-
matics (functional analysis, optimization, numerical analysis), and
statistics (random processes, statistical estimation theory) [1]. It is
predominantly utilized in medical imaging applications such as
computed tomography (CT), positron emission tomography
(PET), single photon emission tomography (SPECT), 3D digital
angiography (DA), and microscopy, IRP was found useful also in
nondestructive evaluation, electrical capacitance tomography, elec-
tron paramagnetic resonance imaging (EPRI), and few other indu-
strial imaging techniques. Surprisingly, tomographic algorithms
have been even applied to study geophysical phenomena, i.e. in
ocean acoustic tomography and whole-earth imaging.

In general, IRP problem is to recover the spatial distribution of
a certain entity based on its projections measured at different an-
gular orientations. Strictly speaking, a projection at a given angle
is the line integral of the image in the direction specified be that an-
gle. In other words by the projection it is meant the information de-
rived from the transmitted (emitted) energies when an object is il-
luminated (or transmits energy) from a particular angle. The first
mathematical formulation concerning a function reconstruction
from its projections has been introduced by Radon as early as in
1917. Presently, the field of IRP is rapidly emerging.

Filtered Backprojection (FBP) is currently the most common
IIR algorithm. Inasmuch as it is linear, fast and robust the method
is generally accepted despite producing images with streaky arti-
facts. FBP is noise sensitive; therefore image quality of the images
obtained using that algorithm may be limited. This particularly
concerns nuclear medicine where the projections are very noisy and
3D digital angiography due to extremely limited number of availa-
ble projections.
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An alternative to methods based on backprojection of filtered
data is the Tterative Image Reconstruction (ITR) approach. IIR ha-
ve been proven to produce relatively higher quality reconstructions
than obtained with FBP, particularly in terms of noise reduction
and artifacts. The iterative methods are generally more computa-
tionally demanding then FBP. However, constant technological de-
velopment makes IIR promising solution even for computational-
ly intensive tasks such as volumetric imaging [2].

Several iterative reconstruction methods have been proposed.
Among them, two main groups can be distinguished: algebraic me-
thods — Algebraic Reconstruction Techniques (ART), Simultane-
ous ART (SART), Multiplicative ART (MART), Simultaneous
Tterative Reconstruction Technique (SIRT) [3] and statistical me-
thods: Maximum Likelihood — Expectation Maximization
(ML-EM), Ordered Subsets EM (OS-EM), Weighted Least Squ-
ares (WLS), Image Space Reconstruction Algorithm (ISRA), Spa-
ce Alternating Generalized Expectation Maximization (SAGE) [1],
and many others. The methods within the former group are usual-
ly used in CT whereas the algorithms from the latter group are uti-
lized in nuclear medicine.

There are common aspects for all the IIR algorithms. One of
them is an image representation that is related to forward and
backprojection operators. These on the other hand are two basic
constituents of any IIR algorithm having a great effect on speed
and accuracy. Enhancements introduced for one algorithm may be
incorporated into another one even when the methods are not
members of the same group. Such situation happened here where
the Weighted Distance Projection Access Scheme (WDS) [4] intro-
duced for ART was incorporated into OS-EM.

Thus, the purpose of this work was to realize and numerically
evaluate the application of WDS into OS-EM. Additionally using
more sophisticated than traditional pixels image elements was as-
sessed with emphasis on efficient implementation of forward and
backward projection.

Il Principles of the iterative reconstruction
methods

Usually in IIR (opposed to analytical approach) the detector sys-
tem so as the projection data are considered discrete. Taking into
account that the resulting image function is represented by a set of
numbers IR problem can be formulated as solving a system of li-
near equations

P=AF (1)

where P is the projection data matrix, F is the image matrix and
A is the transfer (system) matrix describing the relation between P
and F. The A matrix depends on factors such as geometry of the
imaging system, the detector efficiency etc. Specifically, in emission
tomography the coefficients of the transfer matrix represent the
probability of the emission from a particular place in the image
and its acquisition in a chosen detector (detector pair in PET). In
transmission tomography these coefticients represent the contribu-
tion of a particular image element to the total attenuation measu-
red in the detector element.

There is a plethora of inversion formulas derived for solving
such a system. They are based on different assumptions about the
imaging modality properties. In emission tomography, for exam-
ple, the Poisson likelihoods or data-weighted least-squares crite-
rions are utilized. ML-EM takes into account the Poisson nature
of a radioactive decay. OS-EM is an accelerated version of ML-
-EM, which is commonly applied to the imaging system software
in PET and SPECT. This method provides a reconstruction impo-
sing a natural positivity condition, which is not always the case for
additive schemes such as ART. The OS-EM formula is as follows [5]
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where A; represents mean counts at image element j, p denotes the
acquired number of counts at detector element d, D, represents
a partition of the projection space into m subsets, n = 0,1,2,3... is
the subiteration number and k=n mod m. A cycle of m-subitera-
tions constitutes a complete iteration. The coefficients ay in the
system matrix represent the probability of emission in the image
element j being detected in detector unit d.

Il Image representation

An intuitive way of representing digital images is through dividing
the image into set of rectangular elements. Thus the object func-
tion has a constant value within each element (pixel). The discon-
tinuous nature of that representation and the fact that the pixel
projection depends on the angular orientation of the ray-line ma-
de that approach not suitable for IIR.

The development of algebraic methods resulted in other ap-
proaches for image representation. One of them is using so called
basis functions, i.e. spatially limited elements that may overlap.
Mathematically this type of representation is expressed by the for-
mula below [1], [6]
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where {(c;)} is a set of coefficients of the image representation and
{(Jgf—,ij} is a set of J points in 2D space that are the nodes of a uni-
form grid over a region of the space. In this work a Cartesian grid
was utilized. However, other grids were proven to give satisfactory
results and could be used as well.

Using the image representation presented above the line inte-
gral p, of f'along the line 4 can be computed in the following way

J
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where a,; is the line integral, along the line 7, of the shifted basis
function with the center in ("fi’ ¥

The core of every projection (backprojection) process can be
realized in several ways. It can be computed in spatial domain (ray
casting, splatting) or in Fourier domain. In the work of Mueller et
al, [7] the already described continuous representation of discrete
images has been incorporated into projection/backprojection ope-
rators called splatting. Apart from high accuracy those operators
can be sufficiently fast so that they are practical even in volumetric
tomography. The implementations of splatting are footprint based
what means that the blob projection values are preintegrated and
stored in the computer memory. Storing preintegrated projection
values has several advantages [7]: 1) the ray integrals are calculated
very accurately, since each footprint table entry can be integrated
analytically or with good quadrature, ii) the complexity for inter-
polation is reduced, i. e. fast incremental algorithms can then be
used to index the footprint tables in image space (in ray-driven
splatting) or projection space (in voxel-driven splatting), iii) ker-
nels with superior frequency characteristics such as Bessel-Kaiser
function can be used despite their computational complexity. The
computational speed up is additionally achieved through various
kinds of caching depending on the correction scheme and the ava-
ilable amount of memory.

Among the basis functions proposed, the family of Bessel-Ka-
iser functions (blobs) introduced to the field of image reconstruc-
tion by Lewitt [6] has been proven to be a favorable choice. The
blob is defined in the following way
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where r is the radial distance from the blob center (0=r<a), I,
denotes the modified Bessel function of order m, a determines the
extent (radius) of the blob, and o is a parameter controlling the blob
shape. The most useful properties of blobs are: (i) they are spatially
and band limited with possibility of easy tuning, (ii) there is an ana-
Iytical formula for computing their projection, (iii) their frequency
characteristics, which can be also expressed analytically, have more
suitable properties for IIR compared to other basis functions.

Two blobs were considered in this study. The first one had ra-
dius 2 (pixel size unit) whereas the extent of the second one was 3.
For both blobs the? parameter was set in such a way as to place the
first minimum of the frequency characteristic close to the grid
sampling frequency (see Fig. 2). That ensured the highest possible
accuracy of the constant function representation. Spatial plots of
the blobs already described are presented in Fig. 1.
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Figure 1: Spatial plots of the basis functions considered in this study: BILIN
_ bilinear element, BLOB R=2 — blob of radius r=2 and «=10.80, BOLB
R=3 — blob of radius »=3 and 0:=27.58.
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Figure 2: Frequency characteristics of the basis functions considered in this
study: BILIN — bilinear element, BLOB R=2 — blob of radius r=2 and
o=10.80, BOLB R=3 - blob of radius r=3 and 0=27.58.

IV The projection ordering scheme

Hudson and Larkin [5] in their original work describing OS-EM
mentioned that the order in which projections are processed is ar-
bitrary, though it may be advantageous to the quality of the recon-
struction provided to choose a special order. In the simulation study
presented by the authors the projections were ordered in opposing
pairs. For the number of 64 projections they utilized the following
order: 0°, 90°, 45°, 135, 22.5", 112.5', 67.5', etc. Yet, a general pro-
jection selection algorithm was not specified.

The WDS projection-ordering method is based on two postu-
lates which ensure minimizing correlation in projection access.
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The postulates are [7]: (i) a series of subsequently applied projec-
tions is evenly distributed across a wide angular range, (ii) at no ti-
me is there an angular range that is covered more densely than
others. While all of the existing projection ordering algorithms
tend to be strong in one of the two aspects WDS compromises
both postulates in a weighted manner. It is also important that the
projection selection scheme provides a smooth transition between
iterations. This is achieved by including projections applied in pre-
vious iteration, which are stored in the buffer. In conclusion, the
WDS maintains a large angular distance among the whole set of
used projections and prevents clustering of projections around
a set of main view orientations.

V Numerical simulation results

The simulation study was performed using 90 parallel projections
of the Shepp-Logan head phantom [3] uniformly distributed wi-
thin 180-degree arc. The detector size as well as the image size was
equal to 129. The set of projections ordered using WDS was gro-
uped into 18 subsets, The discrete footprint table had 300 subdivi-
sions. Apart from high accuracy and smaller computation cost of
ray driven splatting over pixel driven splatting the former seemed
to be more suitable for OS-EM that is projection oriented. The ca-
ching scheme on a ray level (see Mueller et al. [7]) was used in the
ray driven splatting for the purpose of additional gain in speed.

The accuracy versus number of iteration characteristics is pre-
sented in Fig. 3. It is expressed in term of NRMS error between
the pixels inside the discretized and the reconstructed Shepp-Lo-
gan phantom [3] excluding the exterior high contrast shell, which
represents a skull. Considering the rate of convergence much im-
provement can be observed (Fig. 3) for OS-EM with WDS. That
happened for all the image elements used in this study. Visual in-
spection of the images (Fig. 4) reveals similar positive influence of
WDS on the OS-EM reconstructions compared to the sequential
projection access scheme (SAS). The presented results are in line
with those obtained by Mueller et al [3] for ART. This happens
when the number of subsets is large but it is supposed (and was ac-
tually experimentally confirmed) that with decreasing number of
subsets that influence would diminish.

Tt is clearly seen in Fig. 4 that the low contrast structures of the
phantom reconstructed using bilinear interpolation kernel is not
visually appealing independently of the projection ordering me-
thod. This is not surprising when one analyses the frequency plots
(Fig. 2). The high frequency content is not sufficiently suppressed
by the bilinear interpolation, resulting in noise occurrence. Ano-
ther way of decreasing the noise in subsequent iterations is using
various kinds of regularization. That issue has been recently stu-
died by Chlewicki et al. in [8].
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Figure 3. Convergence analysis in terms of NRMS error versus number of
iterations. The symbols denote: BILIN-SAS — OS-EM with bilinear ele-
ments using SAS. BILIN-WDS — OS-EM with bilinear clements using
WDS, BLOB-SAS -~ OS-EM with blobs (r=2, t=10.8) using SAS, BLOB-
-WDS — OS-EM with blobs (r=2, ¢=10.8) using WDS.
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Figure 4. The images of the original Shepp-Logan head phantom and its re-
constructions using the various options of OS-EM (2 iterations): a) original
phantom, b) OS-EM with bilinear elements using SAS, ¢) OS-EM with bili-
near elements using WDS, d) OS-EM with blobs (r=2, @=10.8) using SAS,
¢) OS-EM with blobs (r=2, ¢=10.8) using WDS, f) OS-EM with blobs (r=3,
«=25.78) using WDS.

VI Conclusions and future work

The performance of OS-EM with blobs in which the projections
were ordered using WDS was evaluated in this work. WDS exhi-
bits more uniform projection access space sampling and applied to
OS-EM improves its convergence rate. Using splatting with blobs
was proven to be an efficient way of implementing accurate for-
ward and backward projection operators. This was confirmed nu-
merically as well as through visual inspection. Ordered subsets ite-
rative methods with blobs, which make use of WDS projection-or-
dering algorithm, seem to be efficacious approach in various ima-
ge reconstruction tasks.

While the OS-EM produces the reconstructions which quanti-
tatively feet the acquired data it is not always possible to establish
relevant diagnosis based on the visual inspection of the images.
For instance, restrictions on the allowed dose of radioisotope used
or the acquisition time constraints may cause the low signal-to-no-
ise ratio (SNR) in the projection data due to insufficient number of
counts. It is postulated here that a very useful solution to tackle
this problem would be using an artificial intelligence algorithm [9]
together with the task specific optimization of the reconstruction
method. This 1s, however, a matter of future investigations.
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W ksiazce Autorzy przedstawili nowe, unikalne podejscie do ana-
lizy obrazow, ze szezegdlnym uwzglednieniem zastosowan w medy-
cynie. Jako plerws1 przedstawili bardzo dojrzata koncepcje automa-
tycznego rozumienia obrazéw. Rozumienie obrazéw jest wediug Au-
~ toréw kolejnym po przetwarzaniu, analizie 1 rozpoznawaniu, etapem
w procesie komputerowej obrobki obrazu. Autorzy podjeli w ksiaz-
¢e niezmiernie trudny i wazny problem automatyzacji interpretacji
obrazow medycznych. To nowe podejécie przedstawione jest
w ksiazce w sposob przejrzysty i bardzo dydaktyczny. Na bazie zna-
nych poje¢ z zakresu przetwarzania, analizy, segmentacji i klasyfika-
cji obrazéow Autorzy wprowadzili pojecia zwiazane z technologia
zrozumienia obrazow, ilustrujac je przykladami z zakresu zastoso-
wan w medycynie. Technologia przedstawiona w ksiazce umozliwia
rozwigzywania problemow analizy obrazow dla przypadkéw do tej
pory bardzo trudnych Tub nawet niemozliwych do automatyzaciji.
Taki przypadkami byly specjalnie kontrastowane obrazy rentgenow-
skie szczegolnie trudnego dlagnostyczme narzadu, jakim jest trzus-
tka (tak zwane obrazy ERCP), a takze inne obrazy medyczne z to-
mografii komputerowej, koronografii serca czy urografii uktadu mo-
- czowego czlowieka. Obrazy te cechuje duza zmiennosé osobnicza,
oraz warunkowana zmiennoscig form i zakresu patologii niepowta-
rzalnos$¢ diagnostycznie waznych cech obrazu. Autorzy przytoczyli
przykiady obrazéw, ktére dla danej (identycznej) jednostki chorobo-
wej roznily sie znacznie w zaleznosci od cech morfologicznych bada-
nego pacjenta. Problem rozpoznawania obrazow w tych przypad-
kach jest bardzo trudny, a w wielu przypadkach niemozliwy do roz-
wiazania metodami ldasycmynu

Autorzy zaproponowali nowg technologie rozwigzania tego
typu problemow nazwana przez nich technologie rozumienia
obrazow. Technika ta nawigzuje do metod lingwistyki mate-
matycznej 1 metod opisywania struktury obrazu z wykorzysta-
niem specjalnych gramatyk oraz dostosowanych do nich par-
serow. Wedlug mnie autorzy dokonali znacznego postepu

‘'w dziedzinie rozpoznawania obrazow, stworzyli nowa jakosé
w tych technikach, ktéra moze by¢ wykorzystana do rozwiazy-

wania wielu problemow w innych dziedzinach, wszedzie tam

gdzie zachodzi koniecznos¢ podejmowania decyzji na podsta-

wie analizy obrazu. Stosujgc zaproponowana technologie ba-

dacz zwolniony jest od zmudnych operacji zwigzanych z infer-

pretacja wynikow przetwarzania obrazow, a zaimplementowa-
na technologia rozumienia obrazéw podaje mu w wyniku
ostrzezenia i alarmy. Tres¢ publikacji podzielona zostala na
sze$¢ rozdzialdw oraz spis bibliografii z zakresu rozpoznawa-

nia i rozumienia obrazow. Bardzo liczne przykiady zastosowan

uwzarygodn:ajz; przedstawume rozwazania teoretyczne oraz
opisane procedury.
Ksmqu ta polecam uwadze wszystkim, ktorzy w swojej dzxaial-

‘noéci badawczej lub inzynierskiej zajmuja sie rozpoznawaniem ob-
razow w zakresie rozwoju techniki, jak rowniez zastosowan. Moze

ona by¢ tez przydatna tym, ktorzy interesuja si¢ mozliwosciami au-
tomatyzacji rozumienia w innych jak rozpoznawanie obrazéw d21e-

'dzmach nauk; i techniki.

Tadeusz Uhl
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