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Abstract

The paper is the first part of a survey of observer based fault detection and isola-
tion (FDI) methods. Considerable part of the material is standard control theory,
especially observers theory. It is presented for future reference. The paper briefly
covers basic ideas and concepts underlying much of model-based FDI. A general
introduction to FDI is given. General idea of model based FDI methods is presen-
ted. The issue of FDI robustness mentioned and short historical background of
FDI is given. The basic concepts of observers, the observability and detectability
of LTI systems, Luenberger observer and unknown input observer (UIO), are
considered. Some selected results from the theory of UIOs and design procedure
for UIO are presented. Finally, a short introduction to singular systems is given
and observers for these systems are considered.

Further results concerning observer-based FDI will be presented in the next pa-
per.

Streszczenie

Artykut jest pierwsza czgscia przegladowej pracy na temat uzycia obserwatorow
do wykrywania i izolacji uszkodzen (ang. FDI). Czg$¢ materiatu stanowia znane
wyniki z teorii sterowania, zwlaszcza z teorii obserwatoréw, na ktore powotuje-
my sig¢ w dalszej czg$ci pracy. Artykul zwieZle prezentuje podstawowe idee i
pojecia opartych na modelu metod wykrywania i izolacji uszkodzen. Zawiera
ogolne wprowadzenie do FDI. Zaprezentowano ogélna idee metod FDI opartych
na modelu. Poruszono rowniez kwestig odpornoéci metod FDI jak réwniez za-
mieszczono krétki rys historyczny rozwoju tych metod. Rozpatrzono podstawo-
we pojecia dotyczace obserwatorow, obserwowalno$ci i wykrywalnosci linio-
wych uktadow stacjonarnych, obserwator Luenbergera oraz obserwatory o nie-
znanym wejsciu. Podano réwniez zwigzle wprowadzenie w tematyke uktadow
syngularnych syngularnych obserwatoréw dla tych uktaddw.

Dalsze wyniki dotyczace opartych na modelu metod wykrywania i izolacji uszko-
dzen beda zaprezentowane w czesci drugiej tej pracy.

1. Introduction

A problem of fault detection and isolation (FDI) in dynamical systems
has received considerable attention both theoretically and practically [2,
21, 23]. In Poland, particularly, essential contributions to FDI have been
made by professor Korbicz’s group from University of Zielona Gora
[22, 20, 21, 23]. The early detection of incipient faults can help avoid
major plant failures. Similarly, fault detection has become very impor-
tant issue in the operation of all systems, where high availability is of
special importance e.g. airplanes, submarines, off-shore placed wind tur-
bines etc. The range of reactions to the fault situations is wide. It conta-
ins immediate emergency actions as well long-term modifications of the
maintenance schedule. Automatic diagnostic systems may assist the hu-
man operator in process supervision and considerably help to make pro-
per decision in fault situation and to carry out an appropriate remedial
action. Generally speaking fault detection and diagnosis consist of the
following tasks [15]:

1. Fault detection, i.e., the indication that something is going wrong in

the system.

2. Fault isolation, i.e., the determination of the exact location of the fault.
3. Fault identification, i.e., the determination of the size of the fault.

Prof. dr hab. inz. Tadeusz KACZOREK

Uzyskat dyplom magistra inzyniera elektryka w roku
1956 na Wydziale Elektrycznym Politechniki War-
szawskiej. Na tym samym Wydziale w roku 1962 uzy-
skat stopie naukowy doktora nauk technicznych,
aw roku 1964 - doktora habilitowanego. Tytut nauko-
wy profesora nadzwyczajnego nadata Mu Rada Pan-
stwa w roku 1971, a profesora zwyczajnego w 1974
roku. Cztonkiem korespondentem PAN zostat wybra-
ny w 1986 roku, a cztonkiem-rzeczywistym w 1998.
Od czerwca 1999 roku jest rowniez cztonkiem zwy-
czajnym Akademii Inzynierskiej w Polsce. W latach .
1969-1970 byt dziekanem Wydziatu Elektrycznego, a w latach 1970-1979 prorek-
torem d/s nauczania Politechniki Warszawskiej. W latach 1970-1981 byt dyrekto-
rem Instytutu Sterowania i Elektroniki Przemystowej Politechniki Warszawskie;j.
W latach 1988-1991 byt dyrektorem Stacji Naukowej PAN w Rzymie. Jest auto-
rem 18 ksiazek, w tym 5-ciu wydanych za granica oraz ponad 500 artykutow
i rozpraw naukowych, opublikowanych w czasopismach krajowych i zagranicz-
nych. Gtéwne kierunki badan naukowych to analiza i synteza uktadéw sterowania
isystemo6w, a w szczeg6lnosci uktady wielowymiarowe, uktady singularne i ukta-
dy dodatnie.

T Kaczorek@ee.pw.edu.pl

Certainly, relative importance of these three tasks is to some degree
subjective. However, detection is necessary in any practical system and
isolation is also very important. What concerns identification, it is very
helpful, but generally not crucial. Hence, fault diagnosis is most frequ-
ently considered as fault detection and isolation, abbreviated as FDL

1.1. Approaches to FDI

The approaches to the problem of fault detection and isolation can be
divided into two major groups:
1. Methods making use of a plant model;
2. Methods that do not make use of a plant model.

Observer-based methods belong to the first approach, and are the
main object of the paper.
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Fig. 1. Hardware versus analytical redundancy

1.2. Model based FDI methods

A broad class of fault detection and isolation methods make explicit use
of the mathematical model of the plant. Most model-based fault detec-
tion and isolation methods rely on the idea of analytical redundancy [4].
In contrast to physical redundancy, where measurements from different
sensors are compared, now sensor measurements are compared to ana-
lytically obtained values of the respective variable. Such computation
uses present and/or previous measurements of other variables and the
mathematical model describing their relationship. The resulting



differences are called residuals. They should be equal or at least close to
zero when no fault is present and differ significantly from zero when
fault occurs.

In practice, even under fault-free operation conditions the residuals
are not zero. Their deviation from zero is the combined result of noise
and faults. If the signal/noise ratio is high, residuals can be analyzed
directly. When any significant noise is present, one approach is genera-
ting disturbance decoupled residuals and this method is adopted in the
paper. In any case, a logical pattern is generated, showing which residu-
als can be considered normal and which ones indicate fault. Such a pat-
tern is called the signature of the fault. The final step of the procedure is
the analysis of the logical patterns obtained from the residuals, with the
aim of isolating the fault(s) that cause them. Such analysis may be per-
formed by comparison to a set of patterns (signatures) known to belong
to simple faults or by the use of some more complex logical procedure.
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Fig. 3. Block diagram of residual generator

Having disturbance decoupled residuals we set thresholds on them
and say the fault has occurred if an appropriate threshold has been exce-
eded. The particular kind of model-based methods are observer-based
techniques and we focus on them throughout the paper. Chow and Wil-
Isky [3] proposed two-stage structure for fault diagnosis, which is now
widely accepted.

1. Residual generation. It is a generation of a fault indicating signal -
residual, from available input and output of the system. A residual
should reflect a possible fault in the analyzed system. This means, the
residual should be normally zero or close to zero when no fault is
present and essentially different from zero when a fault occurs. In
ideal conditions the residual should be independent of system inputs
and outputs. The algorithm or processor generating residuals is called
residual generator. The residual generation is thus a procedure of
extracting fault symptoms from the system, with the fault symptoms
represented by the residual signal.

2. Decision-making. The residuals are tested for the likelihood of faults,
and a decision rule is than applied to determine if any faults have
occurred. Well designed residual generator simplifies the process of
decision making and therefore most of the effort in the field of quan-
titative model-based FDI is devoted to the residual-generation pro-
blem.

The paper concentrates on the quantitative residual generation stage
of fault diagnosis.

1.3. Robustness of FDI

As already mentioned model-based FDI relays on the mathematical model
of a supervised process, nevertheless, one must remember that a perfec-
tly accurate and complete model of a real-world system cannot be obta-
ined. There are many reasons for this. Same parameters of a system may
vary with time, often disturbance acting on the process are unknown or
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cannot be modeled precisely. The discrepancy between the real system
and its model is the cause of fundamental difficulties in FDI; it causes
the false and missed alarms and therefore obscures significantly FDI
performance. The FDI must be made robust against disturbances while
in the same time sensitive to faults. An FDI scheme designed to provide
satisfactory sensitivity to faults, associated with the necessary robust-
ness with respect to modeling uncertainty and disturbances is called
arobust FDI scheme. [13, 26]. The development of robust model-based
FDI methods has been very important research topic during last decade.
A number of methods has been proposed that address this problem, e.g.
the unknown input observer or eigenstructure assignment.

1.4. A brief historical background

More details on history of model-based FDI methods can be found inii.e.
[2]. Hire we will only mention that observer-based methods were first
introduced by Clark and co-workers [8] and [5, 6, 7]. Frank’s compre-
hensive survey paper [12] established the position of observer-based
methods in model-based FDL. In this paper, many different schemes using
both linear and non-linear observers were reviewed and some applica-
tion examples were given. Some more recent results can be found e.g. in
[20].

As already mentioned, Chow and Willsky [3, 4] first defined the
model-based FDI as a two-stages process: (1) residual generation, (2)
decision-making (including residual evaluation). This two-stages pro-
cess is accepted as a standard procedure for model-based FDI nowa-
days. The first attempt of improving robustness of observer-based FDI
approaches is attributed to Frank and Keller [14]. To solve the robust
FDI problem, Watanabe and Himmelblau [29] introduced a robust sen-
sor fault detection method using an unknown input observer (UIO).
A comprehensive treatment on robust FDI using UIOs is presented
in [2].

Patton at al. [27] proposed an FDI method based on observer eigen-
structure assignment and this approach has been studied extensively by
Patton’s group. A comprehensive treatment on robust FDI via eigen-
structure assignment is presented in [2].

To solve robust FDI problems, a mathematical representation for de-
scribing modeling uncertainty is needed. Patton and Chen [25, 1] propo-
sed several schemes to represent modeling uncertainties from various
sources as additive disturbances with an estimated distribution matrix.
Robust FDI is thus achieved using disturbance decoupling approaches.
This is an important contribution to robust FDI. So far, most robust resi-
dual generation methods are based on the assumption that disturbance
distribution matrices are known, however, in many cases this assump-
tion is not valid.

2. Basic principles of observers
2.1. Notation and preliminaries

In the paper capital, italic letters as X, U and Y denote real vector
spaces, with typical elements being denoted by x, u and y, respectivel-
ly. The fields of real and complex numbers are denoted by R and C,
respectively. Weuse C* to denote the open right half-plane formed from
the complex numbers with positive real part; C* is the corresponding
closed half-plane, and the left half-planes C~ and C are analogously
defined. R" and C" denote 7 -dimensional real and complex vector space,
respectively. R™" and C™" denote space of real and complex mxn
matrices, respectively. The dimension of a vector space, e.g. X , is de-
scribed by dim X . The zero vector, zero space, etc. are denoted by .
Matrices and linear maps are both denoted by capital italic letters, e.g.
A, B and C. Matrices as well vector spaces are denoted by capital,
italic letters but since the meaning is clear from context, there is no re-
ason for ambiguity. /mB = B denotes the image of B. KerC denotes
the kernel of C. The spectrum (eigenvalues) of a matrix A is denoted
by o(A). A set of complex numbers A e C is self-conjugate if 1€ A
implies A*e A where * denotes the complex conjugate. B denotes
Moore-Penrose’s pseudo-inverse of matrix B. Symbol := means equal
by definition.
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2.2. Observability and detectability of LTI systems

Let us consider the LTT system
X() = Ax(t)+ Bu(t),  x(0)=x,, (1a)
y() = Cx(1), (1b)
where x(¢)€ R",u(t)e R™ and y(r)e R’ are the state, input and output
vectors respectively and A, B, and C are real matrices of appropriate
dimensions. The system given above is a first order linear equation with
an initial condition, and therefore has a unique solution which is given by

Y(t) = Ce'x, + cjo’ A“OBu(tydr, 120. )

The transient part of this solution depends entirely on the initial con-
dition x(0)=x, y, (1) =Ce*x,,  t>0.

Suppose, we are able to measure (observe) the output function ()
over a finite interval [0,7'], but want to find a value of x,. The expres-
sion for y, can be regarded as a map W from the state space R" to the
vector space F(R, R? | of functions that are R’ -valued; i.e.,
W:R" — F|R,R” |and is defined by x, — Ce*'x,.

Here we consider only the case where ¢ is in the interval [0,T]. So
we have that y, = Wx,.

One can see clearly that W is linear map, namely
W(ox, + Bzy) = ¥ (x,)+ B¥(z,) and it is possible to determine x,
given the function y exactly when there is only one solution to the abo-
ve equation. When y is given than there exists the unique solution, if
and only if the kernel of ¥ is zero, i.e. Ker'¥ =0.

Thus if the above condition holds we are able to determine x,, and if
it is violated then the initial conditions cannot be uniquely determined
by observing y . According to this, the matrix pair (C, A) is called obse-
rvable if Ker'V =0. The subspace Ker'¥ is usually denoted N, and
is called unobservable subspace of the pair (C, A). Thus the system is
observable when N, =0.

Lemma 1. The kernel of W is given by

c
CA
KerV = Ker C -+~ Ker(CA™™) = Ker| .

cA™

The matrix on the right in the theorem is named the observability
matrix; from the theorem, observability is equivalent to this matrix
having full column rank.

Proof. [11] We first show that Ker¥ < KerC N---n Ker(CA™™). Let

x, € Ker'¥ and therefore by definition we know that G#*x, =0, >0

It is straightforward to verify that for each k>0 the following holds
k

L Ce''x,

e =CA"x0.

t=0

But by the equation that precedes the above we see that the left-hand
side must be zero, and so x, must be in the kernel of any matrix CA*
where k is non-negative integer.

To complete the proof we must show that
KerC n--- N Ker(CA™™") < Ker'? . From the Cayley-Hamilton theorem
the function ¢** can be written as e = @,(t)1 +---+¢,_()A"™™, =0
where ¢, (f) k=1,2,...,n—1 are scalar functions. From this it is clear
thatif x, € KerC N--- N Ker(CA™™), then Ce*'x, =0. Q.E.D.
Theorem 1. [11, 18]
a)The pair (C,A) 1is observable if and only if

A=A
rank[ o }: n, forall AeC;

b)the eigenvalues of A + LC are freely assignable by choosing L if and
only if (C, A) is observable;

c) the unobservable subspace N, is A -invariant;

d)there exist a state transformation matrix 7 such that

Ay O 5 i3

A } CTI'=[& 0], where (C» A1) is observable;

TAT =[ %
A An

e) the matrix Ay in part (d) is Hurwitz, if and only if, the condition

A-A =
rank ¢ =n, forall Ae " holds;

0
Notice that in part (d) the following holds TN, = Im [J

We will call the decomposition of part (d) an observability form, be-
cause it explicitly isolates the invariant subspace N.,. Writing out the
state equations in this form gives us particular insight:

xi(0) = Anki(0),
%1(0)

%2(0) = AuFO)+ An®o!): yith the initial condition {f‘
5() = E13(0), %(0)

From here it is clear that %1 only depends on the initial condition
%(0), and is completely unaffected by X; therefore y is entirely inde-
pendent of X2. For this reason we say the vector %1 contains the obse-
rvable state and the vector X2 contains the unobservable state.

If %(0)=0 then %(?) is zero for all time, X>(t) = A5 %2(t), and
y=0. If Az is not Hurwitz then there exist some initial state %,(0),
such that y is zero for all time yet %,(¢) does not tend to zero. When
A2 is Hurwitz, i.e., 0(A,,) € C™ wesay that (C, A) is detectable ma-
trix pair. The detectability is a weaker condition than observability. A
pair (C, A) is detectable when all unobservable eigenvalues of matrix
A are stable.

} =Tx(0).

2.3. Luenberger full-order observer

Let us consider the state space system (1). Our objective is to find an
asymptotic approximation of x(¢) for the given input u and the output
v, without knowledge of the initial condition x(0).
Definition 1. The system

W(t) = Mw(t)+ Ny(t)+ Pu(t), w(0)=w,, (3a)

x(t) = Qw(t)+ Ry(t) + Su(?), (3b)

is called a full-order observer of system (1) if lim [x(t) - )?(t)] =( forall
initial conditions x(0) and w(0), and all system inputs u(t).

Defining estimation errvor e(t) := x(t)— X(t), we can say in words
that system (3) is observer of (1) if his estimation error e(z) tends to zero
regardless of initial conditions and system input. We additionally requ-
ire, that observer is itself stable system, i.e., M in (3) is Hurwitz. The
inputs to the observer are u(¢) and y(t), and the output is x(z).
Theorem 2. An observer exist if and only if the pair (C, A) is detecta-
ble. Furthermore, in that case one such observer is given by
*=(A-KC)x+ Ky(t)+ Bu(t), where the matrix K is chosen such that
o(A-KC)c C .

An observer with this structure is called a full order Luenberger ob-
server. Matrix K is usually called observer gain matrix.

Proof. Proof can be found in many standard books on control theory, for
instance [11, 17].

The above conciderations can be extended for reduced-order obse-

rvers [17, 18].

input output
system
s | stateestimate
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—

Fig. 4. Block diagram of a system with observer

2.4. Unknown input observers

Many results presented in this section can be found in [2]. We consider

‘the observer design for a class of systems described by the following

equations:
X(2) = Ax(t)+ Bu(t)+ Ed (¢), (4a)



y(@) = Cx(), (4b)
where x(f)e R", y(t)e R™, u(t)e R’ are the state, output and the
known input vector, respectively, and d(t)e R? is the unknown input
(disturbance) vector. A, B, C and E are known real matrices with
appropriate dimensions. As we see, the system uncertainty is summari-
zed as an additive unknown disturbance term in the state equation. Wi-
thout loss of generality it can be assumed that the disturbance distribu-
tion matrix E is full column rank matrix. One should note that the num-
ber of independent row of the matrix C must not be less than the num-
ber of the independent columns of the matrix E i.e. the maximum num-
ber of disturbances which can be decoupled cannot be larger than the
number of independent measurements.

rankC =m > rankE = q 5)

The term Ed(¢) describes an additive disturbance as well as a num-
ber of other different kinds of modeling uncertainties as e.g. noise or
non-linear terms in system dynamics. More details on dealing with di-
sturbances appearing in a system in other ways can be found in [2].
Definition 2. The system (3) is called an unknown input observer (UIO)
of system (4), if lim[x(r) — £(t)] =0 for all initial conditions x(0) and
w(0), and all system inputs u(r), regardless of the presence of the unk-
nown input (disturbance) in the system.
2.4.1. Theory of UlOs

Let us consider the structure of a full-order observer
z(t) = Fz(t)+TBu(t)+ Ky (1), (6a)
X(®)=z(@)+Hy(), (6b)
where £ R” and z e R" are the estimated state vector and the state of
this full-order observer, respectively,and F, T, K and H are matrices
to be designed for achieving unknown input decoupling and other de-
sign requirements. One can see that (6) is the special case of (3). When
the observer (6) is applied to the system (4), the estimation error
e(t) := x(t) — x(¢) is governed by the equation
é(t)=(A—HCA—KC)e(t) +[(A- HCA- K,C) - F]z(t)
+[(A- HCA-K,C)H — K, | y(t) +[(I - HC) - T Bu(r)

+(I —HC)Ed(t) @)
where K=K +K,. (8
If one can make the following relations hold true
(HC-DE=0, (9a)
T=I1-HC, (9b)
F=A-HCA-KC, (9c)
K,=FH, (9d)
the estimation error is governed by
e(t)=Fe(r). (10)

If F is Hurwitz, e(t) will approach zero asymptotically. This means
that the observer (6) is an unknown input observer for the system (4)
according to Definition 2. The design of this UIO is to solve equations
(8) and (9) and making all eigenvalues of the system matrix F be stable,
i.e. 0(F) c C. Before we give the necessary and sufficient conditions
for the existence of a UIO, two lemmas are introduced.

Lemma 2. Equation (9a) is solvable if and only if

rank(CE) = rankE, (11)
and its solution is given by »
H = E[ (CEY' CE] (CE)'. (12)

Proof. Proof follows immediately from Kronecker-Capelli theorem and (5)
&

Lemma 3. [2] Let C, = {CA} , then the pair (C,, A) is detectable if and

only of the pair (C, A) is detectable.

Proof. According to Theorem 1 if 5, € C is an unobservable mode of

SI=A
A

=rank| C
CA

sl —

the pair (C,, A), we have rank <mn,ie. s is

i
also an unobservable mode of the pair (C, A). If s, € C is an unobse-

I1-A
rvable mode of the pair (C, A) we have rank [SZ & :l <n.
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This means that a vector e C" can always be found, such that

sSI-A)
e

This leads to (s,/—A)B=0, CB=0, CAB=Cs,f=5,CH=0.

e I 7 h
i -
Hence il :[sz }B =0 rank|* <mie., s, is
CA Cl 1

also an unobservable mode of the pair (C,, A). As the pairs (C,, A) and
(C, A) have the same unobservable modes, their detectability is formal-
ly equivalent. Q.E.D.
Theorem 3. Necessary and sufficient conditions for (6) to be an UIO for
the system defined by (4) are:
a) rank(CE) =rankE.
b) (C,4,) is detectable pair, where

A =A-E(CE)'CA. (13)
Proof. Sufficiency. According to Lemma 2 the equation (9a) is solvable
when condition a) holds. A special solution for H is H = E(CE)'.

In this case, the system dynamics matrix is
F=A-HCA-KC=A -KC, and can be stabilized by appropriate
choice of the gain matrix K, due to the condition b). Finally, the rema-
ining UIO matrices described in (6) can be calculated using equations
(8) and (9). Thus the observer (6) is a UIO for the system (4).

Necessity. Since (6) is a UIO for (4), equation (9a) is solvable. This
leads to the fact that the condition a) hold true according to Lemma 2. A
general solution of the matrix H for equation (9a) can be calculated as
H =E(CE)" +H,[I, ~CE(CE)'|, where H,e R™" is an arbitrary
matrix.

Substituting the solution for H into equation (9c) yields the follo-
wing formula for the system dynamics matrix F

F=A-HCA-K,C=[I -E(CE)'C|]A-[K, HO}[[I —CEfCE)*]C/J

CAJ'

Since the matrix F is stable, the pair (C,, A) is detectable and the
pair (C, A)) is also detectable according to Lemmas 2 and 3.

Bysetting 7 =1, H =0 and E =0 (no unknown inputs in the sys-
tem) the observer (6) will become a classical full-order Luenberger ob-
server. In this situation, condition a) in Theorem 3 clearly holds and
condition b) is simply changed to that of (C, A) being detectable.

Condition b) can be verified in terms of the structural properties of
the original system. In fact, this condition is equivalent to the require-
ment that the transmission zeros from the unknown inputs to the me-

=A-[K, HO}[CZ%AI_R'G’ where Ki=[K, Hy] and (=

= [l —A E
asurements must be stable, i.e. matrix M = [s ”C OJ is of full co-

lumn rank for all s€ C". This can be proved as follows [2]. It can be

I —E(CE)'C sE(CE)' sl — A 0
verified that i L, _ g 5 b
E(CE)'C  —sE(CE)' —~E(CE)'CA E

As the first matrix in the left side of the above equation is a full

sT, — A 0
column rank matrix, we have rankM = rank C 0.
—E(CE)'CA E

We have assumed that E is a full column rank matrix. Hence, condi-
tion b) is equivalent to the case when the matriiin the left side of the
above equation is full column rank for all s€ C . This is because the
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condition for the pair (C, 4,) to be detectable is equivalent to the follo-
. .| sl— A : -
wing matrix & having full column rank for all ge s

From the above analysis, it can be seen that K, is a free matrix of
parameters in the design of UIO. After K, is determined, other parame-
ter matrices in the UIO can be computed by equations (8) and (9). The
only restriction on the matrix K| is that it must stabilize the system dy-
namics matrix F. The matrix K, which stabilizes the matrix F is in
general not unique; therefore there is still some design freedom left in
the choice of K, after unknown input decoupling conditions have been
satisfied.

2.4.2. Design procedure for UIOs

A crucial issue in designing a UIO is to stabilize F = A —K,C by cho-
osing the matrix K, when the pair (C, 4)) is detectable. If (C,A,) is
observable, the task can be accomplished easily by using a pole place-
ment procedure from any control system design packages. If (C,A)is
only detectable an observable canonical decomposition procedure sho-
uld be applied to (C, A,), namely

A0

PAlP“I:[ g J A, e R,
4, A,

CP‘lz[C‘ o], Ce B4,

where 71, is the of the observability matrix for (C, A)), and (C~‘,A”) is
observable. The details on computing the transformation matrix P are
given in [2]. If all eigenvalues of A, are stable, (C,A,) is detectable
and the matrix F can be stabilized.

F=A-KC=P"'[PAP" - PK,CP]|P

=p-1{A” OJ—K [C OJ}P =P

A Ay | K
KP
where: Kp =PK, = K

p

A,-KC 0

4

A —K;C Ay,

{
p
2

P

» 0(F)=0(A,)Ua(4, -K.0).

As (C,A,) is observable, K' can be determined via the pole place-
ment. The matrix K ,f can be any matrix, because it does not affect the
eigenvalues of matrix F . The design procedure of a UIO is thus given
below.

Procedure 1.

1. Check the rank condition for E and Cg; if rank(CE) # rankE, an
UIO does not exist, go to 10.

2. Compute H, T and A using H = E(CE)', T =] - HC, A =TA.

3. Check the observability; if (C, A)) observable, a UIO exists and K
can be computed using pole placement, go to 9.

4. Construct a transformation matrix P for the observable canonical

decomposition.
5. Perform an observable canonical decomposition on (C,A,)
A 0 -
PA P =[ iy } cP'=[C o].
Ay Ay

6. Check the detectability of (C,A,); if any one of the eigenvalues of

A, is unstable, a UIO does not exist, go to 10.

7. Select 7, desirable eigenvalues and assign them to A - K;C‘ using
pole placement. N

8. Compute K, =P"'K, = P'l[(K;)T(Ki)T} , where K is arbitrary
(n—n,)Xm matrix.

9. Compute  and g; F=A -K,C, K=K +K,=K +FH.

10. STOP.

Remarks. There exist simpler methods of determining if pair (C, 4,) is

detectable than one using observable canonical decomposition e.g. Po-

pov-Belevitch-Hautus (BPH) test. However, state transformation matrix

P is used to compute observer gain matrix X i.e. assuming that to be

designed observer exist we have to compute p and decompose pair
(C,A) in order to compute K. Having already observable canonical
form of pair (C, A)) we use it in step 6 to check detectability of this pair.
Example. Consider the example used in [28, 24, 30, 6, 2] with the follo-

-1 1 0 |
100
wing parameter matrices: A=|—1 0 0 ,Cz[o 0 J, E= 0|
0 -1 -1

1. It can easily be checked that rank(CE) = rankE =1.
2. The matrices H, T and A, are calculated as:

1 0 000 0 0 0
H=|0 0|, T=(0 1 0|, A=|-1 0 O]
0 0 0 01 0 -1 -1

3. The pair (C, 4,) is observable, a UIO exists, and the matrix K, canbe
determined via the pole placement procedure. We choose
0(A —K,C)={-2,-2—i,-2+i}. Using standard pole placement

IR0
routine we obtain K, = -1 -5 |.
0 3

9. The matrices F and K are calculated as:

-1 0 O 0 0
F=l0 0 5|[K=[-1 -5]|.
0 -1 -4 0 3

Remark. Usually the choice of the gain matrix K, € R>? is not unique.

2.5. Observers for singular systems
2.5.1. Introduction and preliminaries

Singular systems are found in many fields of engineering, e.g. electrical
circuits, aerospace engineering, chemical engineering etc.; they are en-
dowed with many special features as for instance impulse terms and
input derivatives in the state response, consistent initial conditions non-
properness of transfer matrix etc., these are not found in standard Sys-
tems and make the singular systems theory more sophisticated than of
standard systems.

We provide in this section basic results concerning singular systems
and their observability and observers in order to discuss later FDI pro-
blem for these systems. Observers for singular systems can be themse-
lves either standard or singular systems. The results provided in this
section relay mostly on [18, 19].

Let us consider the singular continuous-time linear system

Ex(t) = Ax(t) + Bu(t), x(0)= X (14a)

y() = Cx(t), (14b)

where x(t)e R", u(t)e R", y(t)e R”, are the state, input and output

vectors, respectively and E, 4, g and ¢ are real matrices of appropria-

te dimensions. In general case matrix E issingular, det E = (). It can be

shown [18] that there exist nonsingular matrices p and Q such that (14)
can be decomposed as follows

) =Ax (t)+ Bu(z), (15a)
n(®) =Cx (1), (15b)
and N x(t) = x, () + B,u(t), (16a)

Y,(@) =C,x, (1), (16b)

"
where x, 0 B
X €R", My =order det[Es—A], x,e R™, n+n,=n, y=y +y,,
CQ=[C, G, N isnilpotent matrix with index ¢, i.e., N % and
N?=0.

Definition 3. The system (14) is called completely controllable (c-con-
trollable), if for any initial state X, € R" and every x, € R" there exist

=07, PEQz[é 1(\)'} PAQ=|:A' ﬂ PB:W:Q‘&,
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tion () on the [0, | such that, x(t,)=x,.
Lemma 4. System (14) is c-controllable if and only if
rank|B,,AB,,-- ~,A”“1B1 =n, (17a)
rank|B,,NB,,---,N*'B,|=n,. (17b)
Proof. See e.g. [18].
Definition 4. The system (14) is called completely observable (c-obse-
rvable), if the following conditions are satisfied.

1, >0 and ¢ - times jiecewise continuously differentiable input func-

Es—

A
i rank[ }=n for all finite se C;

E
2. rank[ :l=n.
C

2.5.2. Standard observers for singular systems

We assume that system (14) is c-controllable and c-observable and
rankC = p. Let us consider the following system

2() = Fz(t) + Gu(t) + Ky (1), (18)
where z7(t)€ R™7 is a state vector, u(r), y(t) are defined as for
(14), F, G, K are real matrices of appropriate dimensions. Defining
é(t) :=Tx(t)— z(¢r) where T = XE, , and taking into consideration (14)
and (18) we obtain

é(1) =Tx(t) — 2(t) = XAx(t)+ XBu(t)~ F [Tx(t)-é(t)]
—Gu(t)— KCx(t) = (XA—FT —KC)x(t) + Fe(¢)

+(XB—-G)u(r). (19)
XA=FT+KC, G=XB, (20)

then (19) yields
é(t) = Fe(p). 21)

Clearly if matrix 7 is Hurwitz than € (¢ ) tends to zero. We choose
matrix 7" (X') such that

T XE
det c =det & #0. (22)

We define state estimation x by the following relationship

B w

From the above we have

-1
T b4 4
X= =M N 5 24
[C } [y] : ][y} v
T -1
where [M N]=%= [C] (25)
It is not difficult to show that

e(t) = x(1) — 2(t) = Me™e(0). (26)

Thus, if F' is Hurwitz e(¢) tends to zero as required and
2(t) = Fz(t) + Gu(t) + Ky(1), (27a)

is standard observer for (14). According to Definition 4 system (14) is c-
observable if and only if

Es—A .
rank[ c }: n forallfinite Se C (28a)

E
and ranl{c} =n. (28b)

From the relationship rank e = rank e e
c 0 If|C

follows that (22) implies (28b) and rankX = n— p. It is easy to show
that if conditions (28) are satisfied, the equation XA = FXE + KC has
solution X satisfying condition (22). From (20) and (27) we have
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XA=[F K]E]

atid [F K]:XAET:XA[M N]. (29)

Given matrices A, B, C, g we choose matrix X subject to (22)
and matrix F having desired eigenvalues with negative real parts. Than
we compute matrices K = XAN and G = XB.

2.6. Full-order perfect observers

The observer problem for singular continuous-time and discrete time
systems has been considered by many researchers [9, 10]. The results
provided in this section relay on [19].
Consider the singular continuous-time linear system
Ex(r) = Ax(t) + Bu(t), x(0)=x,, (30a)
y() = Cx(1), (30b)
where x(t)e R", u(t)e R”, y(t)e R?, are the state, input and output
vectors, respectively and E, A, B and C are real matrices of appropria-
te dimensions. We assume that:

E.
d tE = O, k =n,
e ran {C:l n (31a)
det[Es—A]#0 forsome seC, (31b)
rankC = p. (B1c)

Consider the singular system
E5(t) = Ax(t) + Bu(r) + K [C3(t) — Y(®)],%0) = £, 32)

where £(t)e R", u(t)e R", ¥(¢) € R?, are the observer state, observed
system input and output vectors, respectively and E, A, B, C and K
are real matrices of appropriate dimensions.
Definition 5. The system (32), is called a full-order perfect observer of
the system (30) if and only if £(z) = x(¢) for # >0 and any initial condi-
tions x, and %, of (30) and (32).
Theorem 4. There exist a full-order perfect observer of the system (30)
if the conditions (31) and

Es—A -
rankl: = }: n forallfinite se C (33)

are satisfied.
Proof. See [19].
The proof presented in [19] yields the following procedure for com-

puting of the full-order perfect observer (32).

Procedure 2.

1. Check the conditions (31) and (33). If they are satisfied than go to the
next step.

2. Choose a matrix K so that det[Es—(A+KC)]=0o forall seC
holds.

3. Compute the desired observer (32).

3. Concluding remarks

A general introduction to FDI methods has been given. General idea of
model based FDI methods has been presented. The issue of FDI robust-
ness has been mentioned and short historical background of FDI has
been given. Further, the basic concepts of observers have been conside-
red, such as observability and detectability of LTI systems, Luenberger
observer, unknown input observer (UIO). Same celected results from
the thory of UIOs and design procedure for UTO has been given. Further
results concerning observer-based FDI will be presented in the next pa-
per. Finally, a short introduction to singular systems has been given and
observers for these systems have been considered.
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Tytut: Wykrywanie uszkodzen w uktadach dynamicznych przy uzyciu
obserwatorow - cze$é I

Artykut recenzowany

“

Maciej TWARDY, Tadeusz KACZOREK
POLITECHNIKA WARSZAWSKA, WYDZIAL ELEKTRYCZNY

Observer-based fault detection in dynamical systems - part Ii

Abstract

The paper is the second part of a survey of observer-based fault detection and
isolation (FDI) methods. Observer-based FDI schemes are presented, both for
standard and singular systems. The applications of unknown input observer (UIO)
as well perfect observers to FDI are shown. Basic ideas and concepts underlying
much of model-based FDI, as well a general introduction to FDI have been given
in the first part of this survey.

Streszczenie

Artykut jest druga czescia przegladowej pracy nt. uzycia obserwatoréw do wy-
krywania uszkodzen izolacji uszkodzen (ang. FDI) w uktadach dynamicznych.
Zaprezentowano schematy wykrywania i izolacji uszkodzen przy uzyciu obser-
watorow zardwno dla uktadow standardowych jak i singularnych. Przedstawio-
no zastosowanie obserwatoréw o nieznanym wejéciu jak réwniez obserwatoréw
doskonatych dla celow FDI. Podstawowe idee i pojecia metod FDI opartych na
modelu, jak réwniez ogolne wprowadzenie w tematyke FDI zawiera pierwsza
czes$¢ pracy.

1. Observer-based FDI schemes
1.1. FDI schemes based on UIOs

The main requirement for fault detection is to generate a residual signal
which is robust to the system uncertainty. On the other hand to detect a

particular fault, the residual has to be sensitive to this fault. In this sec-
tion we present several FDI observer-based schemes.

The results concerning FDI observer-based schemes for standard
systems have been given in [1]. We present some generalizations of the-
ses results for singular systems. We also try to apply perfect observers
(they have been discussed in the first part of this survey [5]) to observer-
based FDIL

According to [1], a system with possible sensor and actuator faults
can be described as '

x(t) = Ax(?) + Bu(t) + Ed (t) + Bf ,(t), (1a)
y(#) =Cx() + £,(¥), (1b)

where f € R" and f,e R are vectors of actuator and sensor faults,
respectively. Our task is to generate a disturbance decoupled residual,
using the following UIO

z(t) = Fz(t) + TBu(t)+ Ky(2),
X(®)=z(t)+ Hy(1),
where x€ R", ze R", F, T, K and H are real matrices of appropriate

dimensions. These matrices must satisfy additional conditions guarante-
eing the convergence to zero of estimation error. More details can be
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