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In this paper, we present a certain method of fault detection in dynamic sys-
tems by assuming some boundary conditions. The proposed method relies
primarily, on preparing a neural database of the model neural networks, which
are supposed to represent the dynamic system on its different operating po-
ints. There after, we assume a certain fault state of the system composed of
two or more of the faults in the database and we point out to which of the
faults the assumed system belongs. The core of the method is computing the
Euclidean distance between the output layer weight vectors of the model neural
networks in the database, and the neural network model representing the new
assumed state of the system. Based on the computed Euclidean measure, we
conclude that, the fault model, which has the minimum Euclidean distance to
the new assumed system state model, is the most probable to happen. The
neural network models used are of the RMLP (Recurrent Multilayer Percep-
tron) types, each of which are assumed to possess only one output layer neu-
ron.

Abstract

Streszczenie

W artykule, przedstawiamy pewne metody wykrywanie uszkodzen w ukla-
dach dynamicznych przy pewnych zatozeniach. Przedstawiona metoda opie-
ra si¢ na budowaniu neuronowe bank modeli uktadu reprezentujace uktad
w r6z nich punktach pracy. Po przegotowaniu takim, zatozymy nowe wadli-
we stan ukfadu skladajace z roznych stanow uszkodzeni z bazy, i na podsta-
wie zaproponowang metodg wnioskujemy do ktérych stanéw mozna zakwa-
lifikowac tego nowe zatozonego ukladu. Waznym elementem metody jest
obliczenia odleglo$¢ Euklidesowa migdzy wektoréw wag wyjsciowych mo-
deli neuronowych w bazie danych i modeli sieci reprezentujace nowe stan
ukfadu. Na podstawie t¢ odleglo$ci wnioskujemy, ze, model uszkodzenia,
ktéry ma minimalne odlegtos¢ Euklidesowej na nowego modeli systemu, jest
ten ktory nastapito. Wykorzystywane sieci sa typu RMLP (Recurrent Multi-
layer Perceptron) i przyjelismy zalozenia ze kazde model sieci neuronowej
zawiera tylko jeden neuron wyjsciowe.

Keywords: Dynamic systems, neural networks, Euclidean measure, fault
detection

Stowa kluczowe: Uktad dynamiczne, sieci neuronowe, miara Euklidesowa,
wykrywanie uszkodzen

1. Introduction

The possibility of the approximation of any non-linear function to
any reasonable accuracy degree, by neural networks, and their gene-
ralization capacity, suits their application for the modeling and iden-
tification of non-linear dynamic systems based only on the inputs
and the outputs, without the knowledge of the exact mathematical
model of the system.

In such a case, the general form of a nonlinear dynamic system
which may be defined as

)= f(yk=1), Wk =2),.., y(k—=n), u(k), uk =1),.....uk—m)) (1)
where u(j) and y(j) are signals representing the input and the out-
put of the system at the jth instant, respectively, can be represented

by a neural network which is well trained to identify (to approxima-
te) the function f of the system.

Hence, by assuming that the model neural network is well trained

and well represent the plant ( y = y,, ), the neural network model of
the system can be represented as:
P ®) = F O (R, Yy k=D, 3 (k=) k), ulk =1),... uk—m)) (2)
where y, is the output of the trained model neural network, f isa
nonlinear input output relation of the neural network which approxi-
mates the function f* of the plant, n is the number of the delayed
inputs and m is the number of the delayed outputs of the system.

Assuming a dynamic system to have “n” different operation po-
ints one of which is the normal state of the system and the rest “n-1”
are the different fault states of the same system in a certain pre-defi-
ned interval of the domain, named, the fault interval; in [6], a fault
detection method which enables to classifies a new assumed state of
the system for its belonging to one of the predefined database sys-
tems, is presented. The mentioned work assumes only one of the
faults in the database to occur, in the whole of the assumed fault
interval of the new state of the system.

2. Assumptions and problem formulation

In this work, we assume the new state of the system, which has to be
classified, to be composed of more than one of the faults from the
database in the assumed fault interval. In this assumption, the main
fault interval of the new system-state is divided in to different fault-
sub-intervals, so that, in each of the fault-sub-intervals occurs any
one of the faults from the database.

The dynamic system is subjected to be in its assumed fault states,
in our case, by adding randomly generated values from different ran-
dom generation intervals, to the healthy (no fault) output of the sys-
tem. Neural networks of the RMLP type are trained to capture the
behavior of this system on its different operational points based on
the inputs and outputs at those operational points.

Our aim consists of presenting a method of fault detection, in the
case, where the new signal, which is to be classified, is composed of
portions of different faults, which are identical or similar to those in
the predefined model database states of the system.

We assume that the number of the fault-sub-intervals in the main
fault interval of the new state, to be less than or equal to the number
of neural models in our pre-defined database.

The neural network models used are of the RMLP (Recurrent
Multilayer Perceptron) types, each of which are assumed to possess
only one output layer neuron. Through out our discussion, in each of
the model neural networks, we consider only the output layer we-
ights, which we denote by vector W.

3. Problem solution

Assuming that an arbitrary dynamic system operates not properly in
a certain interval of its domain, we denote this time interval as [z, , , ]
and this is what we call the fault interval. Let in this fault interval,
[#, , t,], occur “k” different faults. This means that, the fault interval
[t, , t,] is divided in to k-portions, in each of which, one of the “k”
faults occur. It is accepted that in a single fault portion, only one of
the k-faults acts. We may denote these k sub-intervals of the main
fault interval, as [p, , p,1, [p, , p,]. -, [Pry » P, ] Where Do
and p, coincides respectively to 7, and 7,.

We build “k” neural networks representing the behavior of each
of these fault-states in these “k” fault-sub-intervals.
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For the fault-sub-interval [p,, p,], the initial values of the
output layer weights (WOn), n=1, 2, ..., k of each of the neural ne-
tworks at the beginning of the fault interval ¢,=p,, is identical for all
of the k-networks W01 =WO02 =,.....,= W0k
Each of the “k” networks having the above initial weight values are
subjected to training on the basis of its respective model input out-
put, beginning from the point p, and ending at the point p,. At the
point p,, we receive the final weight values for each of the networks
denoted as W11, W12, ..... , Wik

Having received the weight values at the point pl, we calculate
the Euclidean distance between the pair (WO0n , Wln) defined as

Nmid

Norm_ pl(n) = \} Z(WOn(i)—Wln(i))z 3)

i=l

for (n=1, 2, ..., k), Nmid is the number of the middle layer neurons
together with the bias.

For the rest of the fault-sub-intervals [p, , , p,], where i=2,
3, ..., k-1: except the first fault-sub-interval [p, , p,], where the
initial weight vectors of all of the neural networks took identical va-
lues, for the rest of the sub-intervals (or for the points starting from
the point p,), the initial weight vector value at the beginning of that
sub-interval, depends, on which of the faults has occurred in the in-
terval-portion immediately before it. For example if in [p, , p,]
occurred fault 3, then, the identification of the fault which may occur
in the sub-interval [p, , p,] must have the initial weight vector va-
lue at p,, which is the final weight vector value obtained when iden-
tifying fault 3 during its action in [p, , p,].

Hence, for the fault which is supposed to happen in the interval
portion [p,_,, p;1,i=2,3, ..., k, having an aim to calculate the Euc-
lidean distance between the pair of the vectors, i.¢., the initial weight
vector of this fault at the point p, , and the final weight vector at the
point p,, it needs the evaluation of many cases. There are “k” possi-
ble initial weight vectors at the point p, ; depending on which of the
“k” faults has happened in the immediate previous sub-interval, en-
ding its action at the point p, . We will be forced to model the fault
in this interval by building as much neural networks as the number
of the probable faults, which could occur in the previous sub-inte-
rval, this number from our assumption is “k”.

So, ifa fault “n” n=1, 2, 3,..., k is assumed to occur in the interval
[P, P;],i=2,3, ...l k, then, we calculate the following values:

Nmid
Norm_p,‘(nm) = \/Z(W(i—l)m (51)_W(,~),,(Q))2 (4)

q=1

where, i=2,3, ..., k,n=1,2, ..., k, m=1,2, ..., k.

In the above expression, Norm _ p,(n™) means the Euclidean
distance between the weight vectors at the points p, | and p,, in the
cases, when in the fault sub-interval [p,_, , p, ;] occurs fault m,
and in the fault sub-interval [p,_,, p;] occurs fault n.

Having prepared such a neural model bank, we assume an arbitra-
ry new-fault-state of our system in the predefined fault interval [, 1,].
Additionally, we assume that, in the mentioned interval, all or part of
the faults in our database neural bank may occur in the different fault-
sub-intervals of [¢, ¢,] in any arbitrary order of occurrence.

This new-system state is identified by a RMLP type neural ne-
twork, which of structure is mentioned above. The initial weight vector
for this neural network is taken to be identical to the initial weights
of those of the neural networks in the model bank, at p,.

During training this neural network, beginning at the point 7, (the
beginning of the fault interval), for every of the fault-sub-intervals,

[y pLlp, D100y DPolicscss [Py, D], we register the output
layer weight vector values of this network, at each of the points p,,
D,» ---» P, and we calculate the Euclidean distance of the pair of the
weight vectors at the two consecutive points as.
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Nmid
Newnorm _p, = \/Z(W(”) (@)-W, (Q))z (5)

q=1

where Newnorm _ p, is the Euclidean measure of the weight vec-
tors, W, at the points p(i-1) and W, at the point p,, in the new
system-state identification. Nmid is the number of the middle layer
neurons together with the bias.

Having calculated the Euclidean distance at the points p,, p,,
..., P, in the new-system-state identification, the proposed fault de-
tection method consists of comparing the calculated Euclidean me-
asures in the new-system-state with those Euclidean distances in the
prepared database model bank at the corresponding fault-sub-inte-
rvals.

The conclusion for the occurrence of a defined fault, in a given
fault-sub-interval, can be done according to the following.

For each of the fault-sub-intervals
[p, pl.lp, PP, D[Py P], we define the following mi-

‘nimum,

Min( Newnorm _p, — Norm_p (n™)) (6)

where n=12,.....k ; i=12,....,k ; m=12,.....,k and we con-
clude that, a fault “n” occurred in the given fault-sub-interval,
[p,_, p,],if it satisfies this minimum.

4. Example

Consider a dynamic system expressed as:

_ Y= y(k —=2) (y(k 1) +0.25)
1+ (y(k =) +(y(k-2))°

(2mk
SInf ———

Assume the fault interval of this system is [80, 160]. For this sys-
tem, a neural bank representing the system on different operation
points is prepared. Let the possible faults, which may occur to this
system in the mentioned fault interval, be identical or similar to one
or more of the following states which are supposed to be in the mo-
del database.

y(k) +(uk)’+0.5 (7)

where u(k) = (=1)* is the input signal to the system.

faultl (k) = y(k) + (rand (1) *10-5) ®)
Sfault2 (k) = y(k)+ (rand (1) *7—-3.5) 9)
Sfault3 (k) = y(k) + (rand (1) * 20-10) (10)

where k takes values in [80, 160], y(k) is as in (7), rand (1), is an
arbitrary random value in [0 1].

For the simplicity, we assume that the main fault interval is divi-
ded in to only two fault-sub-intervals and let these sub-intervals be,
[p, » p,1=[80,120]and [p, , p,]=[121, 160]. In each of these two
fault-sub-intervals, any one of the three faults defined by (8)-(10)
can occur. For the portion [p, , p,] we train three neural networks
representing the three possible fault-states. We know that at point
D, all of the networks have identical initial weight values and at
point p, we receive different final weight values for these three ne-
tworks because of the difference in the input output.

For the sub-interval [p, p,], to model the networks represen-
ting each of the three possible faults, the initial vector value at the
point p, depends on the fault, which may have occurred in the pre-
vious fault sub-interval [p, p,].

Table 1 shows the common for all initial weight vector values
taken at the point p,, the final weight vectors values of each of the
networks at the point p,, and the Euclidean measure between the
initial weight vector and the final weight vector for the respective
cases.
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Table 1. Initial weight vector values at p,, final weight vectors values at py»and
the Euclidean measure between the initial weight vector and the final weight vec-
tor for the respective cases.

Tabela 1. Poczatkowe warto$¢ wektorow wag w punkcie p,, koficowe warto§é
wektoréw wag w punkcie p,, i odlegtoé¢ Euklidesowa migdzy wektorami wejs-
clowymi i wyjsciowymi dla odpowiednich przypadkow

Thé initial The final weights at p1 The Euclidean distance
weight for between
all cases at| Faultl fault2 Fault3 W11 | W21 | W31
p0  (WO)| (WI11) (W21) (W31) |and WO|and W0|and WO
0.00445 | -0.00065 | 0.00008 | -0.00012
0.00894 | -0.00070 | -0.00041 | -0.00047
0.00199 | -0.00020 | -0.00007 | -0.00011 0.14008[0.11352/0.29121
0.00672 | -0.00069 | -0.00029 | -0.00028
0.00190 | -0.00085 | -0.00015 | -0.00024
0.00594 | -0.00025 | -0.00007 | -0.00019
0.00818 | -0.13110 | 0.12081 | -0.28268

On the process of the identification of the fault which is supposed
to occur in the sub-interval [p, p,]=[120, 160], depending on which
of the faults took place in the previous sub-interval [ P, P,1=[80,
120], the initial weight values at point p, can be any of the three
vectors W11 or W21 or W31, of Table 1.

This indicates that, the final weight vector value expected at the
point p, is dependent on the initial weight value at point p,, and on
which of the fault occurred in the sub-interval [ D P,l-

Table 2a-c shows all the possible cases.

Table 2a-c. The final weights at p,, considering different fault cases in PoDi
Tabela 2a-c. Koncowe warto$¢ wag w punkeie p,, dla roznych przypadkow usz-
kodzef w podprzedziale p,-p,

The final weights at p2, in the case when in pO-p1 occurs faultl

faultl in | faultl in | faultl in
pO-pl pO-p1 pO-p1
The initial is is is The Euclidean distance
weight for| followed | followed | followed between
all cases at by by by
plis faultl in | fault2 in | fault3 in
(W11) 1-p2 pl-p2 pl-p2
W12 | W22 (W32
Faultl fault2 Fault3 and and |and
(W12) (W22) (W32) | WI1 | W11 W11

-0.00065 | -0.00018 | -0.00013 | -0.00376
-0.00070 | -0.00065 | -0.00064 | -0.00979
-0.00020 | -0.00012 | -0.00012 | -0.00222 |0.1412 |0.1760 0.6007
-0.00069 | -0.00058 | -0.00058 | -0.00833
-0.00085 | -0.00046 | -0.00041 | -0.00759
-0.00025 | -0.00020 | -0.00019 | -0.00318

-0.13110 | 0.01008 | 0.04487 | 0.46942
The final weights at p2, in the case when in pO-p1 occurs fault2
fault2 in | fault2 in | fault2 in
pO-pl pO-pl pO-pl
The initial is is is The Euclidean distance
; followed | followed | followed between
weight for
all cases at by . by ; by ;
sHli faultl in | fault2 in | fault3 in
wa21) pl-p2 pl-p2 pl-p2
W12 W22 32
IFault1 fault2 Fault3 and and |Z:1’d
(W12) (W22) (W32) W21 W21 [W21
0.00008  -0.00016 -0.00008 |-0.00240

0.00041 -0.00064 -0.00060 |-0.00630
r0.00007 |-0.00011 -0.00009 |-0.00148 [0.1107 [0.0759 {0.3481
+0.00029 |-0.00057 -0.00055 |0.00531
0.00015 |-0.00044 -0.00036 [-0.00484
+0.00007 [-0.00019 -0.00017 }0.00206
0.12081 [0.01008 0.04487 0.46873

The final weights at p2, in the case when in p0-p1 occurs fault3

fault3 in | fault3 in | fault3 in
pOi-Sp i pOi-Spl pOi—spl The Euclidean distance
Th? et followed | followed | followed betwean
weight for
I ol D¥ by by
@ ;?Siess A faultl in | fault2 in fault3 in
w31y |Rlp2 | plp2 | plp2
W12 W22 32
IFaultl ffault2 IFault3 land and and
(W12) (W22) (W32) W31 W31 [W31

+0.00012  -0.00014 -0.00004 [-0.00158
10.00047 -0.00062 |-0.00056 |-0.00395
0.00011 -0.00010 [-0.00008 }-0.00101
10.00028 -0.00055 |-0.00052 [-0.00330 [0.2928 (0.3276 [0.7512
+0.00024 -0.00042 |-0.00033 |-0.00307
+0.00019 -0.00019 [-0.00015 [-0.00131
0.28268 10.01008 [0.04487  [0.46847

On the basis of such a prepared information, now let us assume a
new-fault-state of the system in the predefined fault interval [80, 160],
with this fault interval divided in to two sub-intervals [80, 120], and
[121, 160].

In [80, 120] the new-state is defined as:

New _ state (k) = y(k)+ (rand(1)*7-3.5) (11)
and in [121, 160] it is defined as:

New _ state (k) = y(k)+ (rand (1) * 20 —10) 12)
where y(k) is as in (7), k takes values in [80, 120] in the first case and
in [121, 160] in the second case. Our am is to point out which of the
faults in the database constitutes this new-system-state.

The new-state is identified by a neural network of initial weight
vector values and size defined as before.

Table 3 shows the weight vector values at the point p, =80,
p, =120, p, =160 during the process of the identification of this
new-system-state, and the Euclidean distance between the weight
vectors at the points p,- p, ,and p,-p,.

Table 3. the weight vector values at the different points, and the Euclidean measu-
res, during the process of the identification of the new-system-state.

Tabela 3. Warto$¢ wektorow wag w r6znych punktach, i odlegtos¢ Euklidesowa
obliczona w procesie identyfikacji nowa zatozona stan uktadu.

The new-system state

The initial| The final | The final | The Euclidean distance
weight at | weight at | weight at between
pO pl p2 WNew0 WNew?2

(WNew0) | (WNew1)|(WNew2)|and WNew!1 |and WNew1

0.00445 | -0.00034 | -0.00135

0.00894 | -0.00046 | -0.00136

0.00199 | -0.00008 | -0.00043 | 0.04993 0.32638

0.00672 | -0.00057 | -0.00131

0.00190 | -0.00062 | -0.00164

0.00594 | -0.00011 | -0.00057

0.00818 | -0.03958 | -0.36596

Comparing the Euclidean distance between the pair of the vectors
at the points p, (Wnew 0), and p; (Wnew 1), in the table 3 with
the corresponding Euclidean distance in the Table 1 we get:

- from the table 3 the Euclidean distance between the vectors at the
points p, and p, is 0.04993

- from the table(1) the Euclidean distance between the vectors at the
points p, and p, we have (0.14008 0.11352 0.29121); from the-
se values, the nearest value to 0.04993 is 0.11352 this indicates
that, in the first fault sub-interval [80, 120], occurred fault2.
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The knowledge that fault 2 occurred in the first sub-interval sim-
plifies the problem of finding which of the faults occur in the second
sub-interval, i.e., from the Tables 2 we consider only Table 2b.

From the Table 3 the Euclidean distance between the vectors at
the points p, (Wnewl) and the point p, (Wnew2),is 0.32638 from
the Table 2b the Euclidean distance between the vectors at the points
p, and p, wehave (0.1107 0.0759 0.3481); from these values, the
nearest value to 0.32638 is 0.3481, this tells us that, the fault that
occurred in the second-sub-interval is fault3.

Hence, our new-assumed system is composed of fault 2 and fault
3 of the database faults, in the assumed fault interval [80, 160].

5. Conclusion

In this work, a fault detection method in dynamic systems, which
assumes the occurrence of the fault in a fixed pre-defined fault-inte-
rval, is presented. The paper gives the solution method, in the case,
when the fault interval is divided in to different fault-sub-intervals
and the dynamic system under consideration is assumed to be under
the influence of two or more of the faults from the database, in the
whole of the fault-interval. Only one of the faults is assumed to oc-
cur in each of the fault-sub-intervals. The proposed fault detection
method relies, on computing the Euclidean distances between the
output layer weight vectors of the model RMLP type neural networks,
registered at the beginning point and the end point of each of the
fault-sub-intervals. Based on the computed Euclidean measures, a
fault model in the database, which has the minimum difference to the
Euclidean distance of the new-system- state model, is, concluded to
occur.

PAK 4/2004

References

[1] Duch W, Korbicz J, Rutkowski L, Tadeusiewicz R.: Biocybernetyka
i inzyniera biomedyczna vol. 6 Sieci neuronowe, Akademicka oficyna wy-
dawnicza EXIT. Warszawa 2000

[2] Dzielinski A.: Modelowania i sterowanié ukladow nieliniowych metoda-
mi neuropodobnimi, Oficyna Wydawnicza Politechniki Warszawskiej. War-
szawa 2002.

[3] Kaczorek Tadeusz: Adaptation algorithms for 2-D feed forward neural
networks, IEEE transaction on neural networks Vol.6, No 2 1995.

[4] Korbicz J., Koscielny J.M., Kowalczuk Z., Cholewa W.: Diagnostyka pro-
cesow (Modele metody sztucznej inteligencji zastosowania), Wydawnictwa
Naukowo-Techniczne. Warsawa 2002

[5] Osowski Stanislaw: Sieci neuronowe w ujeciu algorytmicznym. (In Po-
lish), Wydawnictwa Naukowo-Techniczne. Warszawa 1996.

[6] Getachew Alemu Wondim: An alternative approach to fault detection in
dynamic systems, on the basis of output layer weight values comparison
of the model RMLP type neural networks, Measurement Automatics and Con-
trol. No. 11, November 2003. Poland.

Tytul: Metody wykrywania uszkodzen w uktadach dynamicznych,
na podstawie miary Euklidesowej migdzy wektorami wag wyjscio-
wych modeli neuronowych

Artykut recenzowany

'NOWE OBNIZONE CENY REKLAM W PAK-u
CENNIK PUBLIKACJI PLATN YCH nal p()lmCZe 2004 roku

: . REKLAMA ‘ Czarno-blala Kolorowa ;
*) Iokladka ... 2500 7t
11 okladka .. 2000 zt
_ Dloklada = — 1900 zt
IV okladka . 2300 71
| lmom(73250m) 900 zt 1350 7t
1 strony (175x125 mm) - pb’zioma ' 500 7t 750 zt
R strony (85x225 mm) - plonowa ‘ 500 zt 750 zt
Y strony (85x125 mm) _ 300 zt 450 zt
**) % strony (85x60 mm) - pozmrr'ag 200 zt 300 zt
; ) dodatkowa mformac;a na okadee wg uzgodmen ' .
| oy tylko weg 1ndyw1dualnych uzgo ' .

. STALE WKLADKI

ARTYKULY TECHNICZNO—INFORMACYJNE
- Adresewane do speqahstow na poziomie mzymersklm -
‘ 1 strona PAK-u - 800 zt (+50% kolor)
Cena do uzgodmema w zale znosc1 od hczby stron i sponsorowanego tematu

. tematyczne lub ﬁrmowe Wydrukowane przez zlecemodawcq

. Do wszystktch cen dgliczdmy podatek VAT 2% . ; :




	4-2004-17.pdf
	4-2004-18.pdf
	4-2004-19.pdf
	4-2004-20.pdf

