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Abstract

The paper examines properties of solutions to ordinary differential equations
from the point of view of their applications as averaging and low-pass filters.
The stationarity of solutions to systems with varying parameters was analy-
zed together with stability conditions of these systems by making use of the
theorem on stability of non-homogeneous systems when the corresponding
homogeneous systems were stable. The transient state was analyzed and the
possibility of its shortening was shown. The performed simulations of the
variable parameters Butterworth, Legendre and Chebyshev low-pass filters
of the 2-nd up to the 6-th order proved usefulness of the method.

Streszczenie

Przedstawiono wlasciwosci rozwigzan rownan rézniczkowych zwyczajnych
o zmiennych parametrach pod katem wykorzystania tych uktadow jako fil-
trow dolnoprzepustowych. Dokonano analizy stacjonarnosci rozwigzan ukla-
dow o zmiennych parametrach oraz warunkow stabilnoscei tych uktadow,
wykorzystujac twierdzenia o stabilno$ci réwnan rozniczkowyeh niejedno-
rodnych o zmiennych parametrach wtedy, gdy odpowiednie rownania jedno-
rodne sa stabilne. Przeprowadzono analize¢ stanu nieustalonego wykazujac
mozliwos¢ jego skrocenia przez uzmiennienie parametrow. Przeprowadzono
badania symulacyjne dolnoprzepustowych filtrow o zmiennych parametrach,
zrealizowanych w oparciu o aproksymacje Butterwortha, Legendre’a i Cze-
byszewa. Badania te potwierdzily korzystne wlasciwosei filtrow o zmien-
nych parametrach, co pozwala na skrécenie stanu nieustalonego.

Keywords: low-pass filter, varying parameters, stationarity, stability
of systems

Stowa kluczowe: filtr dolnoprzepustowy, zmienne parametry, stacjonarnosc,
stabilnosc systemow

1. Introduction

As it follows from the analysis of spectral and dynamical properties
of the constant component filters with time-invariant parameters it is
possible to shorten the transient state by introducing time-varying
filter parameters during this transient state [1, 2, 5, 6, 10]. Since there
are considerable differences between the time of working out the
constant component of the filtered signal, which is long, and the time
of stopping or passing the variable components, which is signifi-
cantly (many times) shorter, it is justified to look for the possibility
of shortening the transient state by shortening the time of working
out the constant component. Such possibilities are given by the in-
troduction of varying filter parameters during the transient state. This
may result in lengthening of the time of working out the variable
components however as long as this time does not exceed the time of

working out the constant component the phenomenon does not need
to regarded as undesirable. It is assumed that varying filter parame-
ters during the transient statc appears to be an effective way of short-
ening this transient state.

2. Stationarity of solutions of parametric systems
for t— o0

In order to analyze spectral properties of filters with time-varying
parameters one can use methods applicable to time-invariant sys-
tems under the conditions that the filter parameters stabilize (with
o-accuracy) after passing of the transient state. To show this the the-
orem on spectral density of the output signal [4] after passing of the
transient state in linear systems was used. One proved that this result
held also for systems with time-varying parameters if their values
stabilize when t—ee [7].

In the relations (1), (2) and (3) one introduced the spectral trans-
mittance K(jw) of a system with constant parameters which corre-
sponds to a system with time-varying parameters at /—oo, denoting it
by K.-(jw) if the condition lima, (t)=a, = const.
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The above presented proof allows to apply the spectral relations
which hold in the steady state for linear time-invariant systems to
systems with time-varying parameters if these parameters stabilize
their values with time.

3. Stability of systems with varying parameters

In order to examine stability of systems with varying parameters one
cannot apply the universal methods applicable to time-invariant sys-
tems. In this paper one used theorems and their proofs contained in
the original literature as well as in works describing ways of making
use of them [3, 7, 9]. This allowed to analyze conditions of stability
of systems presenting themselves filters with varying parameters.

Every analog filter with time-varying parameters can be described
in the form of the following system of differential equations

Lz=A(f)y+x(!) @)
where A(f)e C(I*), x())e C(I*).

The quoted theorem and corollaries imply that it is sufficient to
obtain stability conditions for the homogeneous linear system, which
is a reduced system in comparison to the non-homogeneous linear
system. Stability of the linear homogeneous system is equivalent to
stability of the corresponding non-homogeneous system described
by equation (4) independently of the input x(r).
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To find stability conditions of the system with varying parameters
one has used the second Lyapunov method [4, 9]. Stability was ex-
amined for the second order system with varying parameters satisfy-
ing conditions imposed on the systems described by equation (4).
This system can be a part of a structure of higher order filters or be
a separate filter of the constant component.

The system which satisfies the relation (4) is the following sec-
ond order system

d*y dy
di2 +2ﬁ(rkou(t)dt +w0(f)y:0 9)
After some manipulations, the stability condition for the second
order system was obtained

@, (1) < 2B () (1) ©)

The inequality (6) determines stability conditions for the second
order system with parameters varying at any time #, It is essential for
low-pass and constant component filters that their parameters stabi-
lize after passing of the transient state. For this reason conditions
determining asymptotic stability are important and this is described
by the inequality

lim/e, (¢) < 1im 28t o, (¢) 7
Fulfillment of conditions
]me B(t)=const 0 (8)
and
!i_)rga)(, (t)=const=0 (9)

mean that the time derivative of the characteristic frequency tends to
Zero
Eﬁ}wn(t)=0 (10)
Fulfillment of relations (8), (9) and (10) implies that the homoge-
neous system described by the parametric equation (5) is asymptoti-
cally stable and consequently the non-homogeneous system is as-
ymptotically stable. This means that the necessary and sufficient con-
dition for asymptotic stability of the second order parametric system
under the conditions (8), (9) and (10) is convergence of the damping
function and the characteristic frequency function to constant values
of the same signs when —eo. This condition does not exclude tem-
porary local positive feedbacks caused by opposite signs of values of
both functions. On this basis one can conclude that if the structure of
the filter contains elements with varying parameters so if for 7—oe
value of the function describing the characteristic frequency con-

verges to constant value: lim @, (r): const , then stability of the
e

filter can examined in the same way as of a system with time-invari-
ant parameters [7]. If relation (10) does not hold, then the condition
(6) has to be satisfied which restricts the rate of changes of parame-
ters.

4. Transient states in filters with varying para-
meters

The simplest system which can act as a low-pass filter or constant
component filter is the first order time-lag system. Although it is
a system with worst properties if the time constant T is replaced by
time-varying function 7(z)

T(t)=Tli-c- expl—s7)| (11

Comparing the step response k., (¢) of the filter with varying
parameters (parametric) with the step response hmm,(t) of the corre-
sponding filter with the time constant T=cons? one obtains and com-
paring the response i,u, 1) of the system with varying parameters to
the sinusoidal input signal with the response V., l‘% of the system
with constant parameters to the sinusoidal input signal one obtains,

after manipulations,

PAK 1/2004

Halt) 1 )

y{’rm.n‘ (r) l —C- exp(" tT?I) }ICOHJI (r)

From the comparison of the responses to the sinusoidal input one
gets the same function (12) as from the comparison of the step re-

=x(t,c) (12)

t
sponses. To illustrate relation (12) one has plotted function Z(% ,L'J

in Fig. 1.

t
Fig. 1. Function X{T .t'] from relation (12)

f
Rys. 1. Wykres funkeji Z(T ,{‘] na podstawie zaleznosci (12)

t
One can see that the surface of function X{T’CJ in the whole
range of variables ¢ and ¢ lies above the plane y=1. Only for c=0 the
function y=1. This is obvious since for ¢=0 the time function de-
scribed by (9) becomes a time constant independent of time. Values

i
of function x[ T ,C) in the rest of the range of the variables changes

rise with the increase of the range of changes of the time function
(c—1). It can be seen that with the increase of time the value of the
function tends asymptotically to unity, independently of the values
of the variable ¢. It means that in the steady state the examined, cor-
responding to each other time-invariant and time-varying systems
have the same responses to the same input signals. The step response
of the system with varying parameters achieves the steady state with
o-accuracy faster than the analogous system with constant parame-
ters.

Regarding the system with varying parameters as a low-pass fil-

ter one can notice that values of function x(; N ] greater than one
result in longer damping time of the components with frequencies
@>0. This means that the variable components will be damped long-
er in the parametric system than in the system with constant parame-
ters. However, it is known from analysis of systems with constant
parameters that damping of the variable components with c-accura-
cy is many times shorter than working out the constant component.
One should then estimate whether the introduction of parameters
varying in time can shorten the time of the transient state.

5. Low-pass filters with varying parameters

The Butterworth, Chebyshev and Legendre polynomials are often
used for approximation of the frequency characteristic of low-pass
filters [10]. For the Chebysheyv filters one assumed that the module
frequency response had the waviness of 0,5 dB in the pass band and
the slope of 3 dB at the band limit. For the Legendre filters one
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assumed that the module frequency response had the waviness of
3 dB in the pass band and the slope of 3 dB at the band limit.

For the Butterworth filters only the slope of 3dB at the limit of the
pass band was assumed since the frequency response does not show
any waviness inside the band.

It was decided to introduce time-varying parameters f(7) as re-
placement for those which had the lowest values for particular types
of filters. It gives the possibility of decreasing the oscillativeness of
filters and consequently also shortening of the transient state [4].

Furthermore, one decided to carry out the simulations of the low-
pass filters with variable parameters assuming functions f(7) in the

form
. L ’ il n
‘Bi({)_A[(HTm} xp( Ty H #Pis ()

where: A=1-f_, B, - the final value of the damping factor
resulting from the appropriate approximation

The values of parameters of functions (13) were chosen in the
way which allowed their values to settle down with o-accuracy fast-
er than the settling times of the examined filters. In the simulations
the tolerance band was assumed equal to 0=0,05.
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Fig. 2. The exemplary functions f =AT, ) for the Butterworth filters: of the 3-rd
order - series 1, of the 4-th order - series 2, of the 5-th order - series 3 for B(1)
corresponding to (13) and n=1

Rys. 2. Przykladowe wykresy funkcji ¢ =AT, ) dla parametrycznych filtréw But-
terwortha: 3-go rzedu - series 1, 4-go rzgdu - series 2, 5-go rzedu - series 3 dla B0
opisanej zaleznoscia (13), dla n=1
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Fig. 3. The exemplary functions #, =f(T, ) for the Legendre filters: of the 3-rd order
- ¥3, of the 4-th order - y4, of the 5-th order - y3, of the 6-th order - y6 for B
corresponding to (13) and n=1

Rys. 3. Przykladowe wykresy funkcji ¢, =(7,,) dla parametrycznych filtréw Le-
gendre’a: 3-gorzedu - y3, 4-go rzedu - y4, 5-go rzedu - y5, 6-go rzedu - y6 dla Bt
opisanej zaleznoseia (13), dla n=1

During the simulation the oscillativeness of filters was lowered
by introducing 3 (¢) in the 3-rd order filter, B,(¢) - in the 4-th and 5-th
order filters, and f3,(¢) - in the 6-th order filter. Examinations were
done for the wide range of values T, , occurring in the relation (13).
At this stage of examination the main 1mpact was put on determining

31

values of parameters in (13), for which the oscillativeness was low-
est. Figs 2, 3 and 4 show exemplary values of the relative settling
time ¢ as function of 7, for B(7) and the assumption n=1, obtained
during the simulations. The relative settling time 7 was obtained by
dividing the settling time of the parametric filter by the settling time
of the analogous filter with constant parameters.
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Fig. 4. The exemplary functions /=T, ) for the Chebyshev filter of the 4-th or-
derand 1 =A(T,)) for the Chebyshev filter of the 5-th order for (1) corresponding
to (13) and n=1

Rys. 4. Przykladowe wykresy funkcji 7 =f(T, ) dla parametrycznych filtrow Cze-
byszewa: 4-go rzedu - t, i, 5-go rzedu - £ =T, ) dla B,(#) opisanej zaleznodcia
(13)idlan=1

6. Conclusions

Diagrams presented in the Fig. 1 show that. The varying in time of
the damping ratio in the Butterworth filters of the 3-rd up to 5-th
order allows to shorten the transient state by about 25-30% in com-
parison to the filters with constant parameters. For the Legendre fil-
ters of the 3-rd up to 6-th order the shortening of the settling time by
25 up to 45% was obtained. For the Chebyshev filters of the 4-th and
5-th order one obtained accordingly 45% and 35%. This was achieved
mainly by decreasing the oscillativeness of the filters during the tran-
sient state.
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