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Abstract

In the paper the problem of ship trajectory tracking with &-accuracy is consi-
dered. A three-degrees-of-freedom ship model with full dynamic interaction
between motions in roll, sway and yaw is assumed. The aim of the paper is to
determine the robust control for ship trajectory tracking with e-accuracy. Such
control is obtained by means of a state feedback (called Tytus feedback) sys-
tem characterised by an arbitrarily high gain. For this purpose a non-linear as
well as linearised stable and unstable ship model is used. The simulation
results confirm that a high precision performance can be achieved by the
proposed control scheme.

Streszczenie

W pracy rozwaza sig problem sterowania ruchem statku po zadanej trajekto-
rii z dowolnie mala e-dokfadnosciq. W rozwazaniach przyj¢to model statku
o trzech stopniach swobody i pelnym opisie zaleznosci dynamicznych po-
migdzy przechylami bocznymi, kotysaniem wzdiuznym i kursem statku. Ce-
lem pracy jest wyznaczenic odpornego uktadu sterowania ruchem statku po
zadanej trajektorii z e-dokfadnosciq. Ukladem spelniajacym powyzsze wa-
runki jest ukfad ze sprzgzeniem zwrotnym od stanu i dostatecznie duzym
wzmocnieniem. Opisany ukiad ze sprzezeniem zwrotnym wykorzystano do
sterowania nieliniowego modelu statku jak rowniez dla sterowania zlineary-
zowanego, stabilnego i niestabilnego modelu statku. Wyniki symulacji w §ro-
dowisku MATLAB-SIMULINK potwierdzaja wysoka jako$¢ sterowania jaka
moze by¢ uzyskana dzigki wykorzystanie zaproponowanego uktadu.

Keywords: tracking systems, multivariable systems, feedback control, mari-
ne systems

Stowa kluczowe: uklady $ledzace, wielowymiarowe uktady ze sprzezeniem
zwrotnym, automatyka morska

1. Introduction

The remarkable growth in transport of passenger and cargo at sea as
well as the monitoring and exploitation of ocean resources has deter-
mined the construction of an increasing number of new surface ships
and underwater vehicles. For efficient operation at sea, it is essential
that these craft should be equipped with advanced control systems.
Control systems to be installed on board ships are generally designed
in such a way as to reduce fuel consumption, to minimise disturbing
wave induced motion and at the same time to improve navigation
accuracy. It has been verified in recent years that traditional control
methods are generally inadequate for designing efficient coritrol sys-
tems.

Design solutions for marine craft motion control are often rather
difficult to find within the framework of classical control theory, owing
to the intrinsic non-linear dynamic behaviour of the plant itself and
to the disturbances, which act upon it. Many research and simulation

studies have been conducted in recent years in order to design and
put into operation a new generation of ship control systems, such as
autopilots, stabilisers and dynamic positioning systems, capable of
efficiently and safely carrying out demanding navigation tasks in
awidely varying range of environmental conditions. In principle, the
design of such control systems should be based on a multivariable
approach, which takes proper account of the couplings between the
different motion and determines control systems within the frame-
work of optimal control theory. A number of successful simulation
studies and sea trials have been carried out which apparently sup-
ported such an approach.

It is worth and surprisingly enough noting, however, that the adop-
tion of these optimal designs has been until now quite rare on board
new ships, where old fashioned PID autopilots are often still pre-
ferred. This apparent discrepancy is partly due to the fact that most
of the proposed designs are critically dependent on the availability
of accurate mathematical models of the ship and environment, which
are generally quite complex and difficult to determine and properly
implement on-line tuning. It is therefore attractive proposition to
explore the applicability of robust control methods, which potential-
ly can reduce the negative effects on the control system performance
of the uncertain factors affecting the ship dynamic behaviour. Most
of these methods can be derived by an H.. optimisation approach,
which aims at satisfying the control specifications with a significant
rejection of disturbances. It has been shown that this corresponds, in
the linear case, to the determination of a stabilising feedback con-
troller that minimises the infinity-norm of a properly weighted sys-
tem transfer matrix. The weights are chosen in such a way as to cope
with the main uncertainties affecting the system.

In this paper a novel algorithm for determining a robust control
strategy for the ship multivariable track-keeping problem is present-
ed. This algorithm, based on a functional analysis approach, reduces
the computational complexity, which generally does not allow an
efficient implementation of robust control methods, such as for ex-
ample in the case of U-synthesis, in multivariable systems. Simula-
tion results are presented that confirm the achievable and excellent
performance of the proposed control system. These results have been
obtained after simulation experiments based on a non-linear ship,
model previously determined from towing tank and sea trials exper-
iments.

2. Ship mathematical models

For the ship motion analysis it is useful to consider the two co-ordi-
nate systems shown in Fig. 1. The first one X ¥ Z 1is chosen in the
earth-fixed point, while the second XYZ in the centre of symmetry of
the hull. Pitch and heave motions will be neglected, taking into ac-
count that they are uncoupled with longitudinal plane motions. We

will take under consideration
xwX the ship motion in three de-
grees of freedom relating the
coupled sway, yaw, and roll re-
sponse to the rudder at a con-
stant cruising speed.
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Fig. 1. Ship co-ordinate system
7 Rys. 1. Uklad wspolrzednych statku

At first the controller for a linear and unstable model of ship mo-
tion, given by Blanke and Jansen [1] is determined. This model has
the form:
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In the particular case the variables ¥ (1)=[x,(?), x,(?), ..., x ()] can
be considered as the state variables of the operation P We will de-
S note them by (/=P (u(?)).
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There are two unstable eigenvalues.

Equations (1) are a straightforward linearisation of the non-linear
model for a ship speed of 12.5 m/s and ship’s metacentric height
GM=83 cm. The control system designed for the model expressed
by equations (1) is then compared with a control system for the pa-
rameter tuned model given by equation (2)
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This model has all stable eigenvalues. The designed control sys-
tems for the above linear models will be subsequently used for con-
trolling with &-accuracy the non-linear model proposed by Blanke
and Jensen [1].

In analysing the ship motion control system we must also take
into consideration the mathematical model of the steering machine.
The rudder angle and rudder rate boundary result from the character-
istic of the steering machine. Typical constraints are in the ranges:

18] < Smax= 35 deg, 5' <8, =23 deg/s or ‘STSSDM =46 deg/s (3)
These constraints will be used for determining the class of admis-

sible reference signals (class of given ship trajectories) L2{ ¥} or more
generally R{W}, described in the next section.

3. High precision state feedback control system

The systems presented in the paper enable control with e-accuracy
for a stable or unstable plant P described by a high order differential
equation. This can be done by using a state feedback (called here
Tytus feedback) presented in the following part.

Let us consider a set of signals X regarded as a Banach space. For
example X can be the set of signals with bounded energy L2, or the
set of signals with bounded mean power M (Marcinkiewicz space).
Let a plant, given by operation y(#)=P(u(t)), transform any set of sig-
nals Wc X into X. We assume that operation P is a composition as
shown in equation:

P=P (..(P(P))) 4)
for the operations x (1)=P (u(1))=P (x (), x()=P (x (1), =2, ..., n.
We assume that P, transform the sets of signals Wi X into X. Let
the operation P be given by the set of equations

Xo(t)= Pluy (1))
where y (=[x, (1), x,(1), ..., x_(D]",y (N=x_ (1) are reference signals,
e(0=x, (00, XO=le (1), ). ... e OT=( (DA, 1, 2, .o m,

e(t)="Ye,(t), are error signals, u(f)=x (1) is the control signal. The
i=1

scheme of such system (Tytus system) is shown in Fig. 2.

Furthermore, let the operation P be one-to-one, then the “ideal”
control system should be a system generating (for any signal y )
a control signal u=P"'(y,).

We denote by X{Pm} a set of all signals v,(f)eX such that the
operation P and constant O<m<eo satisfy the relations

Pl(y,)e X and 1P (y,)lly < m<oo @)

ie. X{Pm}={ y,(DeX: P'(y,)eX and P (y,)lly < m<so}

If the constant m is not determined exactly then the notation X{P}
will be used.

Fig. 2. Feedback system controlling the plant P=P (...(P(P ))) with &-accuracy
Rys. 2. Ukiad sterujacy obiektem P=P (...(P(P)))) z e-dokladnosciq

Definition 1: The plant P is controlled with e-accuracy to signals
Yo(t)e X{ P,m} by the system (3) if there exist such constants k,k,(k,
k, depend on ¢) that for every k €[k, .k, ) the inequality

.l <€ ®)

is satisfied.

At first, we take under consideration the system (6) as a particular
case, when P=P (i=1). If the operation P, is one-to-one, then the
“ideal” control system is a system generating, for any signal
X0i€ X{P;}, the control signal x_, =P (x ). We assume that the opera-
tion P, transforms the set of signals X{P,} into Banach space X. Let &
be a real number (& € R). The first two equations of (6) can be writ-
ten in the form

¥, —F (xi—l )= %XM (9)

for any given point x,;€ X{P;}. In order to use Graves theorem [2]
we rewrite the equation (9) in the form
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1
H(*'C,Y)=H(x.>|~x;)=xm_E(x.ul)_zx.;x (10)

If relation (10) satisfies the assumptions of Graves theorem, then
mapping H(x, ,.x) generates the implicit operation
X3G,(x,)=x_€X, kelk,=) (1)
Additionally, let us assume that the mapping P is continuous, one-
to-one and that there exists a continuous inverse operation
%, =P7'(x,). Under the above conditions, for any point x,€ X{P:},
there exist two points x,.; , x+i.;€ X such that:

Xpp—= P: (x*:—l )— % Xy =0 (12a)
X, —P(x,,)=0 (12b)
or
G, (xm:): Kein (13a)
B )y (13b)

where G,(x ) is the implicit mapping generated by equation (10). In
this case, the Definition 1 is equivalent to the Definition 1°.
Definition 1’: The plant P is controllable with e-accuracy to refer-
ence signals xo(f)e X{P;,m} by the system expressed by (6), if there
exist constants &, &, (k, k, depending on &) such that for every
k €[k,.k,) there exists an implicit mapping G, (x,, )= x.,, generated
by (10) such that the inequality

|G (e )- B ()], <& (14)
is satisfied.
Theorem 1. ([3], [4]): Let the operation P, transform a set of signals
X{P} into space X and P, fulfil the conditions:

.~ ()C*J—I)JXH =0

1°, for every x,{(neX{ P} exists x-.;(f)e X such that x 7

o

2°. Pi{x;1) is continuously differentiable

|
3 [1?')(";;—4)*%} e X.X) for every k e[k, e0)

then the system described by equations (6) controls the plant P, with
g-accuracy for x,{t)e X{P;} and k E[kl,ki)

Let the operation P, mapping a set of signals from Banach space
X into itself be linear, causal and stationary. Now let X be a Banach
space L’ (or space M). We assume that operation P is given by the
formula

1

[Pr'xr'—l KI)= ij (’ _r)dh,‘ (T) (15)
0
where /(7) is a bounded variation function, or by a transfer function
P(s). We rewrite equation (6) in the form
1 1
kxs—l(f)zxi(f)_'[xg_x(t_T)dhg(f) (16)
0
Theorem 2. If for a number ke [k;,k2), where k& ;» I, are sufficiently
large, and for the operation P, the inequality

|
—+ Pls
L £ ()
is satisfied, then the system given by equations (15), (16) controls
the plant P, with e-accuracy for a reference signal
Xo(DEL*{Pi} (xoi()e M{P;}).

Theorem 2 is a particular case of the Theorem 1.

inf

res=0)|

>0 (17)

Formula (17) in Theorem 2 has the following geometrical inter-
pretation: The system described by equations (15) and (16) controls
aplant P, with e-accuracy for a class of input signals L {P} (orM{P})

if the spectrum of operation P(s) and interval [—;—;) are disjoint

sets.

4. System with state feedback

Now we take under consideration the superposition P of operations
P, given by the formula (4) and (5). If we put (4) and (5) into equa-
tion (6), we get
u(f)=k{(Pz"(xuz(t))~P1(M(F)))+(P3"(xnz(i‘))-Pz(Pl(M(l))))+~-
oA (=P (P (u(1))))) }
HD)=[P2" (xa2(1))-Pr(u(D)), P (s (8))-Po(Py(u(1))). ...
coes Xon(O)-Pol.. (Pr (D))’

XolD=[P1(uo(1)), Po(P1(4o(1)), ..oy Pul...(P1{ua(0)))]'=
=[Py (xoa®), P57 (3 (1)), s Xen )]’
Equation (6) for the linear, causal and stationary plant takes the form:

(18)

(1 O R
QR N
| 1 ff= 1 e, (s)
al] [x(9] [Al9 O 0 1
ald|_[xl)| | 0 RlB() 0 My a9
sl [xfl L0 0 R(sIB(s) - B(s)] 1
x| [B(s)-2(s5) 0 -« 0|1]
we)l | 0 BB | 0 _E'_v‘,(s)
x,.(5) 0 0 e 1Lt

Formally, for k — oo, the system shown in Fig. 2 controls the plant
P with g-accuracy. The following theorem can be proved.

Theorem 3: If all of the operations:

P WoX{P)X, Pi X{Pui)X{P)cX, i=2,3, ..., n satisfy as-
sumptions of the Theorem 1, then superposition of P given by for-
mulae (4) also satisfies the assumption of Theorem | and the system
shown in Fig. 2 controls plant P with &-accuracy.

5. Ship trajectory tracking

Now taking into consideration the control system given by equation
(6), let the control signal u(r) consist of the rudder angle in time &().
We will assume that plant P consists of the ship motion model and
the steering machine. Also it
is assumed that we do not
know exactly the ship speed
on the reference ship trajec-

tory.

Fig. 3. Track of ship trajectory
Rys. 3. Sledzenie trajektorii statku

) w(n)

As areference signal we take the vector r(f)=[ y4(), po()]". Coef-
ficient p(f) is connected with the roll angle ¢(f) and it will be as-
sumed that p,(£)=0. The first cocfficient y;(¢), is connected with ship
heading angle y(/). Tt can be determined in the following way: let
point {x{¢,),»(f,)} denote the actual ship position in the system axis
XY, (see Fig. 1), at the instant f,- We denote {x(f),y,(¢)} as the
point which lies on the assumed ship trajectory at a distance o from
{x(2)(2,)} to {x(z,)v(1,)}. The distance d should be constant for
every time instant ¢, In other words, the point 1x,(0.p,()} is an inter-
section point of the assumed ship trajectory and the circle with radi-

us d(t) = y/(x,(t)= ()} + (3,(t) = y()} = cons. and centre in the actu-
al ship position {x(1),(f)}. The first coefficient W (1), of the refer-

ence signal r(f) is defined as the angle between the line passing through
two points {x(£),v(1)}, {x,().y,(6)} and the X -axis, see Fig. 3.
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6. State feedback system for the linearised ship
model
We take under consideration the ship model given by equations (1).

From equations (1) we can find the relation between & and y as
a following transfer function

w(s) —0.005s* —0.00035” —0.0001s

WY 3 3 2 (20)

8(s) s°+0.25855" +0.0274s" +0.0059 —0.0001s
The relation between & and p is given by formula

pls)_ —0.0043* +0.0026s" +0.0003

5(s) 5 +0.25855" +0.02745° +0005%5° —~0.000ls V)
We introduce the auxiliary variable u by formula

uls 1

( ) = 22y

5(s) 5 +0.2585s* +0.0274s* +0.0059s* ~0.0001s

The state variables of the operation P (compare formulae (5), (20),
(22)) can be defined in the following way

x,(D=u(t), x(0=w 1), xz(r):u”(t), (23)

w” (1=-0.061"(£)-0.02u(1)-200y1 1) (24)

Based on the Theorem 2 and Theorem 3 we can conclude that

system shown in Fig. 2 controls the considered ship model (1) or (2)

with e-accuracy to the reference signals from class X{W}=L?{P} (or

X{W}=M{P}). To the class of a reference signals L?{P} belong all

signals from space L?, with bounded (in the sense norm of L* space)

the first five derivatives.

- u™ u” u’” u’ U Fig. 4. Generator
the state variables
u(f), u'(1), u”(t),
W (1), w7 (1) of the
operation P

Rys. 4. Generator
zmiennych stanu:
u(n), w' (o), w0,
w0, w7 (1)

Integratort

i, (1) u,'(f)

Fig. 5. Generator of the
reference signal u (1)
Rys. 5. Generator sygna-
tu zadanego u (1)
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Fig. 6. Full scheme of the system controlling considered ship model
Rys. 6. Pelny schemat ukladu sterujacego rozwazanym modelem statku
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Fig. 7. Results of the simulations: a) Reference signal y (1)=-0.1cos(7)+0.1, b) Sig-
nal p(#), ¢) Signal v (1)-y(7) .

Rys. 7. Wyniki symulacji: a) sygnat zadany v (1}=-0.1cos(£)+0.1, b) sygnal p(1), ¢)
sygnal y (1)-yA1)

Based on the formulas (20)-(24) in prepared MATLAB SIM-
ULINK simulations the classical analog model of the plant P and
generator of the reference signal u, (7) has been used. The scheme of
such systems is shown in Fig. 4 and Fig. 5. The full scheme of sys-
tem controlling a ship model is show in Fig. 6. The exemplary simu-
lations have been made for the feedback gain £=1000 and reference
signal y (1)=-0.1cos(t)+0.1. Results of such simulations are shown
in Fig. 7.

7. Conclusions

Presented above results of simulations confirm a high quality of the
presented above control system. It should be noticed that considered
state feedback control system is not sensitive for large changes of the
parameters of the transfer function (20) denominator.

The presented in the paper method used for the linear systems can
be extended to the non-linear cases (in the way similar as in the paper
[5]). The Matlab-Simulink simulations was made for the non-linear
ship motion model given by Blanke and Jansen [1]. This simulations
also confirm the high precision control of this non-linear model by
the system shown in Fig. 2.
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