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Abstract

The main objective of the paper is to show that the concept of the implemen-
ted semigroup provides a natural mathematical framework for analysis of
the infinite-dimensional differential Lyapunov equation (DLE). Such a Lya-
punov equation arises quite naturally in various system-theoretic and con-
trol problems in which the time horizon is finite, the state space is infinite-
dimensional and the operators involved in the mathematical model of the
system are unbounded. As an application we show how this approach can be
used to solve a simple decoupling problem arising in optimal control.

Streszczenie

Gtoéwnym celem pracy jest pokazanie, ze koncepeja pélgrupy zlozonej jest
naturalnym narzedziem matematycznym do analizy nieskoficzenie wymia-
rowego rozniczkowego réwnania Lapunowa. Tego typu réwnania wystepuja
w problemach sterowania ze skoficzonym horyzontem czasowym i modelem
matematycznym zawierajacym operatory nieograniczone. Podejscie oparte
na polgrupie ztozonej pozwala wyprowadzi¢ warunki konieczne i wystar-
czajgce ograniczonoéci rozwiazania rézniczkowego réwnania Lapunowa w
odpowiedniej przestrzeni. Jeste§my przekonani, ze polgrupa ziozona moze
by¢ uzytecznym narzedziem matematycznym w nieskoriczenie wymiarowej
teorii sterowania i systeméw. Jak przyktad zastosowania przedstawionej teo-
rii w pracy pokazano rozwiazanie pewnego problemu rozprzegania wyste-
pujacego w zadaniach sterowania optymalnego.

Keywords: implemented semigroup, infinite-dimensional differential Lya-
punov equation, decoupling

Stowa kluczowe: potgrupa ziozona, nieskoriczenie wymiarowe rézniczko-
we réwnanie Lapunowa, rozprzeganie

1. Introduction

In a variety of problems of systems and control theory one encoun-
ters the following differential Lyapunov equation (DLE):

X(t)=AX(t)+ XA+ BB*, X(0)=Xo, (D)
where X (£), A and B are linear operators acting on infinite-
dimensional Hilbert spaces. In this paper we present a natural ma-
thematical framework within which a comprehensive analysis of the
equation (1) can be carried out. In particular we are able to derive
a necessary and sufficient condition on the operator B under which
DLE (1) with unbounded operators A and B admits a suitable bo-
unded solution X (#). As the main mathematical tool we will use

the concept of the implemented semigroup, e.g. [1], [2], [3]. and
explore its properties as examined in [4], [5].

2. Motivating example

In order to state a certain optimal control problem which will serve
as a motivating example we first need to introduce the following no-
tation and assumptions:

- H, U are Hilbert spaces (identified with their duals) which play
the role of the state space and the control space.

- A is a linear, unbounded operator on f/ generating a strongly con-
tinuous semigroup 7'(t) € .Z(H), t > 0, which describes the free
system dynamics. H1(A) = Z(A) is a Hilbert space with the sca-
lar product (-, )z, cay = (AL — A)(-), (M — A)(-)) g, where
A € p(A) and p(A) denotes the resolvent set of A. Analogously
we define H,(A") = 2(A”), where A is the unbounded adjoint
to A.

- H_1(A) is the completion of /1 in the norm

1 ey cay = A = A) ™ C)la

where A € p(A). Analogously we define H_1(A"). One can show
that the Hilbert spaces H{_1(A) and H_1(A") can be equivalently
defined as the duals H1(A*)" and H1(A)', respectively. Moreover,
the above definitions imply that H;(A) C H C H_1(A) with con-
tinuous and dense inclusions. The semigroup T'(t) € .%(H) and its
generator A restrict to f;(A) and extend to H_1(A). For the sa-
ke of simplicity we use the same notation for these restrictions and
extensions.

-B e .Z(U, H_1(A)) is the control operator.

With the pair {A, B} we associate a control system with the
state z(t), t > 0, characterized by the usual differential state equ-
ation

#(t) = Az(t) + Bu(t), =z(0) =0, 2

where u(f) € U is the control. Then we assume that 7 £ (0, oc)
is fixed, xo, 21 € H, B is an admissible control operator (e.g. [6],
and consider the problem of finding a control wuep: € L*(0, 73 U)
which minimizes the quadratic performance index

J(u) = ||z(r) — 21 ”i’ e |[“«Hi2(o.r;U) (3)
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over the space L2(0, 7; U7).

Under our assumptions the above optimal control problem
has a unique solution w,,: and the optimal pair {tope, Zopt} €
L*(0,7:U) x C([0,7]; H) is uniquely characterized by the fol-
lowing optimality conditions

Topt(t) AZopt(t) + Buope(t),  wopt(0) = x0, (4a)
pt) = —A'p(t), p(7) = 21 — ope(7) (4b)
uopt(t) = Bp(t). (40)

Itis clear that for wo, 21 € H and admissible B € % (U, H_1(A))
solutions of both differential equations (4a) and (4b) have to be un-
derstood in the mild sense and the expression (4c) for the optimal
control only makes sense as a function in L2(0, 7; 1/).

When we substitute (4c¢) into (4a) we can see that the problem
we are dealing with takes the following form

[mm}:{A BB*Ha'l(*)], tefo,7,  ©)

T (t) 0 A" x2(t)
with 21 (0) = 2o and z2(7) = 21 — 21(7), where Tops = 2
and topr = B"ws. This is a two-point boundary value problem

whose solution [z1(¢) z2(¢)]", ¢ € [0, 7], is awkward to compute.
This is because the final condition xz(7) depends on the final con-
dition m1 () so that the two differential equations are really coupled
and what is more the operator BB™ appearing in the first equation
is highly unbounded with respect to the state space H (it satisfies
BB™ € Z(H1(A"), H_1(A))).

We will show that we can introduce new state variables and
decouple the system by transforming the operator matrix of the sys-
tem (5) into the block diagonal form. In order to state our problem
properly we replace (5) by considering first the following two-point
boundary value problem

i1 () [t BB z1(t) 21(0) )
Fo(t) 0 —A* za(t) |’ alry || !
with i (0) € H and z3(7) € H2(A"), where we do nor assume a
priori admissibility of the control operator 5. The initial-final con-
ditions of (6) differ from those of (5) since we do not now assume

that x2(7) depends on 1 (7). However, in the end we will return to
this case. Since z2(7) € H2(A") we immediately obtain

z2(-) € C([0,7]; H2(A")) N C* ([0, 7]; Hi(AY)),

where H3(A") is the domain of A*. The differentiability of (%)
together with the assumption 3 (0) € H imply that

z1(:) € C[0,7]; H) N C* ([0, 7]; H_1(A)).

Thus the system of differential equations (6) holds in H_1(A) x
H1(A™) forevery t € [0, 7).

As the next step we would like to introduce new state variables
[wi () w2(t)]" defined by

[ wn (t) ] - [ I —M(t) } { x1(t)

wa(t) 0 I za(t) } - telor], ()

such that
[58)-(2 % ][28). wena. o

with w1 (0) = 21 (0) and wa(7) = 22(7). Ideally we would want
the operator M (%) to have the following nice properties:

- M(t) is bounded on the state space H, i.e.

M(t)e £(H), telo,7], ©9)

and continuous in time in the strong operator topology of % (7).
- M (t) is well-defined at least in ZL(H1(A™), H_1(A)),ie

M(t) € L(H1(A™), H_1(A)), telo,1], (10)
and is continuous in time in the strong operator topology of this spa-
ce.
- In order to ensure that the initial-final conditions have the form as
in (8) we also need

M(0) =0. (11)

One can check that for every ¢ € [0, 7] the operator matrix (if it
exists) transforming the original state variables [z1(f) 22(t)]” into
the new state variables [w, (t) wa(t)]” (see (7)) is boundedly inver-
tible for every t € [0, 7] and the original variables can be recovered
by means of the formula

(28 ]=15 P [u8]. teon w

We are now ready to proceed and in order to find out how M ()
should look like let us differentiate (7) to obtain

28] - [4 0[]
w2

Il

0 i x2(t)
I —M(t) i1(t)
& [0 if sz(t)]' (13)

Under our assumptions on x1(0), x2(7) and M (¢) the system of
equations (13) is well-defined in H_;(A) x Hy(A*) for every
t € [0, 7). After the substitutions of (6) and (12) followed by simple
manipulations we finally arrive at

[58]-
{ 64 ﬂw(f)+AM(-¢)+M(t)A*+:E1j: } [ :j;g J

which again makes sense in //_1(A) x H; (A") forevery t € [0, 7).
Thus in order to justify (8) we have to answer the question whether
there exists a solution M (t) € £ (H), t € [0, 7], to the differential
Lyapunoy equation (DLE)

M) = AM(t)+ M()A” + BB*, M(0)=0, (14)
where the equality is understood in % ( H (A*), H_1(A)). It turns

out that the natural mathematical framework for analysis of (14) is
the implemented semigroup concept.

3. Implemented semigroup

In this section we keep all the notation and assumptions introduced
at the beginning of Section 2. Using the strongly continuous semi-
groups T'(t) € £ (H) and T* () € .%(H) generated by A and its
adjoint A7, respectively, we can define another semigroup.

Definition 1. The family {(t) € £ (¥ (H)), t > 0, defined as
follows
UBDX =T(OXT*(t), Xe.L(H), t>0, (15

is called the implemented semigroup.
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Using this definition we can easily check the following proper-
ties of the family L/(¢):

(a) The family U (t) ¢ Z (% (H)),t > 0, is a semigroup, i.e.

UOX = X, XeLH),
UL+ )X = UDMU()X) =US)UBX).

(b) U(t) € (£ (H)) is continuous in time at every { > 0 in the
strong operator topology of .%(H), i.e.

Jim (|G + A)X)h = USX)h|n =0, heH. (16)

The main difference between the usual strongly continuous se-
migroup (see [2]) and the implemented semigroup is that in general
for X € #(H) we cannot expect the operator U (1) X € .%(H) to
be continuous in time in the (natural) uniform operator topology of
£ (H ) unless the semigroups T'(¢), T*(t) € #(H) are uniformly
continuous. However, this is true only if their generators A and A*
are bounded operators on H.

Definition 2. The infinitesimal generator A of the implemented
semigroup (1) € L (L (H)),t > 0, is defined as the limit
(AR = T w

t—0t

Xed(A), heH,
(17)

where %(A) C #(H) is the domain of A defined as follows

P(A)={X € Z(H): lim

] w exists} . (18)
t—0

In order to get more understanding what the domain Z(A) &
Z’(H) and the generator A look like we provide the following re-
sults:

(e) X € #(H) belongs to the domain %(.A) if and only if the
restriction of X to H1(A") belongs to ' (Hy(A*), H,(A)), i.e.

P(A) C L(H)N.L(Hi(A"), Hi(A)), (19)

and an extension of (AX + X A") € #(H(A”), H) to H belongs
to Z(H).
(d) The operator A has the following explicit representation

(AX)h = AXh+XA*h, X e P(A), heHi (A", 20)

where by (c) the right hand side of the equality (20) is well-defined
in H.

The basic properties of the implemented semigroup resemble to
a great extent the corresponding properties of strongly continuous
semigroups and can be summarized as follows:

(e) For X € #(H) the following relations hold
t
/ Ur)Xdre 2(A), t=>0, (21)
0

where the integrals are convergent in the strong operator topology.
(f) For X € &(A) andt > 0 we have U(t) X € %(.A) and

gg(u(t)X) = (AUB)X)) = U(t)(AX)). (22)

(g) Z(A) is dense in .Z’(H ) in the strong operator topology.

(h) The operator A is closed on #°(H ) in the uniform operator to-
pology and hence also in the strong operator one.

(i) The following inequality holds

U2y = ITE 2@ < Me*t, >0, (23)
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and for A € C such that Re A > 2w we can define a family of
operators R (\) € £ (¥ (H))

RNX = /OOO e MUt)Xdt, X e L(H), 24)

where the integrals are convergent in the strong operator topology.

(j) The following inclusion holds {A € C : Re A > 2w} C p(A),
where p(.A) denotes the resolvent set of A.

(k) If Re A > 2w, then the family R (\) coincides with the resolvent
R(A, A) of the operator A, i.e.

RA)=RANA) =M -A) e L(LH) @5
and Z(R(N)) = Z(R(), A)) = D(A).

It immediately follows from property (f) of the implemented
semigroup that for every X € %(.4) the expression

X(@)=Ut)Xo =T (#)XoT"(t), t=>0,
satisfies the conditions
X(t)e 2(A), X(t)=AX(t) € L(H), X(0)= Xo.

So X (t) is a solution to the homogeneous Cauchy problem

X(t) = AX(t) e L(H), t>0, X(0)=Xs. (26

Let us now notice that by property (d) the differential equation (26)
can be written in the form

X(t)h=AX(t)h+ X(t)A*h, he Hi(A*), X(0)=Xo,

and thus it becomes the homogeneous Cauchy problem correspon-
ding to DLE. However we are interested in the non-homogeneous
Cauchy problem for this equation. This problem is dealt with in the
next section.

4. DLE with a bounded input

In this section we consider the non-homogeneous Cauchy problem
of the form

Xt)=AX(@t)+F, t>0, X(0)=Xo, (27

where X € Z(A) and F' € Z(H). In order to state the main re-
sult for the equation (27) it is convenient to work with the following
notation and assumptions:

- Throughout the rest of the paper we assume A € C satisfies the
condition Re A > 2w.

- 'H = Z(H) denotes the Banach space equipped with the usu-
al norm || « [|% = || - ||(zr). In the space H we distinguish the
uniform operator topology generated by the norm and the strong
operator topology.

- H1 = Z(.A) denotes the Banach space with the norm

I~ N7 = [ICAZ = A)C) |l - (28)

In H1 we distinguish the uniform operator topology generated by
the norm and the strong operator topology which is defined as
follows: Every sequence {X }7°,, where X} € Hi, is conver-
gent to X' € M in the strong operator topology if the sequence
{(AZ — A) X, }72,, where (AT — A)X, € H, is convergent to
(AZ — A)X € H in the strong operator topology.

As we already know (see (20)) the differential equation (27) can

be also written explicitly as DLE
X(th=AX()h+ X(t)A*h+ Fh, he Hi(AY), (29)

with X (0) = Xo € H; and F € H,
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Lemma 3. If F' € H, then DLE (29) has a unique strong solution
X(t) € Hy, t > 0, which is continuous in time in the strong ope-
rator topology of Hi and continuously differentiable in the strong
operator topology of H. This solution is explicitly given by the
expression

X(t)

U(t) Xo + ]'t Ut —7)Fdr

T XoT* () + /'t T(t— r)FT" (¢ — ) dr. (30)

5. DLE with an unbounded input

In this section we consider the non-homogeneous Cauchy problem
of the form

Xt)=AX@®)+F, t>0, X(0)=Xo, ()

where Xo € Hand F € £ (Hy(A"), H_1(A)). We need to intro-
duce the following extra notation and assumptions:

- H_1 is defined as the completion of H = % (H) in the follo-
wing sense: Every sequence {Y }72, where Y. € H, is a Cau-
chy sequence in the strong operator topology of H_1 if the se-
quence {Xj}re,, where X = R(A, A)Y, € Hi, is a Cauchy
sequence in the strong operator topology of 7. This allows us to
extend the resolvent R(\, A) to R(A, A) : H_1 — H such that
Z(R(M A)) = H and also allows us to define a norm in H_1 as
follows

1Xllre_y = IR A X1, X € Hox (32)

‘H_; is complete in this norm and we distinguish the strong operator
topology defined above and the uniform operator topology defined
by the norm (32). For the sake of simplicity we will use the notation
R(A, A) also for the extension R(A, A). We can restrict the imple-
mented semigroup L£(¢) € H, t > 0, and its generator A to H; and
extend them to H_; in the strong operator sense. We will use the
notation {(t) and A also for these restrictions and extensions. The
operator A on H_ satisfies

Z(A)=H, RMA €L (H-1), Z(RNA)="H.
Every operator ¥ € H_; can be identified with an operator
Y € Z(H1(AY),H_1(A))
and we have
HyC HC Hoy CEHAT), H 1 (A)) (33)

with dense and continuous inclusions in the strong sense.
The formula

U)X = THXT(t), X e L(H(A"), H_1(A)),

where T'(t) € #(H_1(A)) and T*(t) € .#(H1(A")), defines an
implemented semigroup on .%(H,(A"), H_1(A)) which is conti-

nuous in time in the strong operator topology. The domain Z(.4) of
the inifinitesimal generator .4 contains H, i.e.

H C 2(A) C L(H\(A"), H-1(A)), (34)
and the generator A admits the following explicit representation
(AX)h= AXh+XA*h, XeM, heH(4"), 39

where this equality is understood in [{_1(A).
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- A, U(t) understood as operators on 7 _; and A, Z(¢) understood
as operators on ¥ Hi(A"), H_1(A)) are related as follows:

(AX)h = (AX)h=AXh+ XA'h, X€H, (36)
UBOY)R = UOR=TE)YT*(t)h, ¥ € H_1,
where h. € H1(A™) and all equalities understood in H_;(A). We

regard these relations as justification of the notation A and 14(t)
used for A and I/ (t) in the remaining part of the paper.

Lemmad. Let ReA > 2w. ThenY € ¥ (H1(A™), H_1(A)) sa-
tisfies the condition

Y e Hoy (37)
if and only if the following algebraic Lyapunov equation (ALE) has
a solution X € 'H

MXh, ) — (Xh, A*g)u — (XA"h, 9)m = (Y, g) i xmy

where h,g € H1(A") and (-, ) u; « u, denotes the duality pairing
between Hy(A*) and Hi(A")'.

We can now consider the differential equation
X()=AX@t)+F, t>0, X(0)=Xo, (38

where Xg € Hand F € Z(H;(A"), H_1(A)). In view of the re-
lations (36) the above equation can be rewritten in the more explicit
form

X(t)h = AX(t)h+ X (t)A*h + Fh, hec H:i(A%), (39

where X (0) = Xo € H, F € ¥ (H1(A"), H_1(A)) and the equ-
ality in equation (39) understood in H_1(A).

Lemma 5. If F' € H_1, then DLE (39) has a unigue strong so-
lution X (t) € H, t > 0, which is continuous in time in the strong
operator topology of H and continuously differentiable in the strong
operator topology of H_1. This solution is explicitly given by

X(f)=u(t)Xn+/tb({t~r)Fdr, t>0.  (40)
0

It follows from Lemma 5 that a sufficient condition on F' €
Z(H1(A*), H-1(A)) which guarantees that DLE (39) has a solu-
tion X () € H, is simply F* € H_1. It turns out this condition is
also necessary. In order to show this necessity we introduce

(MPF)(t) € L(H1(A"), H.1(4)), t=0, (41

defined as follows
ot

(MF)(t):/U Ut=r)Bdr, >0, (42)

where F' € £ (H1(A™), H_1(A)).

Definition 6. F' € #(H,(A"), H-1(A)) is said to be an admis-
sible input element for the implemented semigroup U(t) € . (H)
if for some ¢;1 > 0 and every { € (0, ¢:1] there exists a constant
m(t) > 0 such that

[((ME)(@)h, ) 1y xazy | < m(t) ||zl gl (43)
forh,g € Hi(A") (i.e. (MF)(t) € Hfort € (0,¢1]) and

Jim [[(ME)(Ohlla =0, he Hi(A"). (44)
Lemma 7. If FF € Z(H1(A"), H_1(A)) is an admissible in-

put element for the implemented semigroup, then (MF)(t) € H,
t > 0, and is continuous in the strong operator topology of H.
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The admissibility of the input operator F'is simply equivalent to
the requirement that (39) has a solution X (t) € M, ¢t > 0, which is
continuous in time in the strong operator topology. It follows easily
from Lemma 5 and Definition 6 that every operator F' € 7 _1 is an
admissible input element for the implemented semigroup. The main
result of [3] shows that the converse is also true.

Theorem 8. F € Z(H.(A"), H 1(A)) is an admissible input
element for the implemented semigroup if and only if it satisfies
FeH_1.

Corollary 9. DLE (39) has a unique strong solution X (t) € H,
L = 0, which is continwous in time in the strong operator to-
pology of H and continuously differentiable in the strong ope-
rator topology of H-1 (hence also in the strong operator topo-
logy of ZL(H1(A™), H_1(A))) if and only if the input operator
F e Z(H\(A"), H_1(A)) satisfies the condition F € H_1. This
solution is explicitly given by the expression

X(@) = Z/{(t)Xn+/tL{(t—T)Fdr

= TE)XoT*(t) + /tT(t— rVFT*(t —v) dr . (45)
J0O

6. Example continued

By applying Corollary 9 and Lemma 4 to DLE (14) we immediately
obtain the result we are after.

Corollary 10. The differential Lyapunov equation
M(t)= AM(t)+ M(t)A" + BB*, M(0)=0, (46)

has a unique strong solution M (t) € % (H), t > 0, which is conti-
nuous in time in the strong operator topology of £ (H ) and continu-
ously differentiable in the strong operator topology of H_1 (hence
also in the strong operator topology of £ (H1(A*), H_1(A))), if
and only if

BB e H_:. 47)

This solution is explicitly given by the expression

M(#)

]t?/((t —r)(BB")dr

0

t
f T(t—=r)BB*T"(t—r)dr, t>0, (48)
0

and the differential equation (46) holds in H_1 for every t > 0.
The condition (47) is equivalent to the fact that for Re X > 2w the
algebraic Lyapunov equation

)\<Xh>g>H T (Xh'. A*g)H == (XA*h!g)H > ('B*hl‘B*.(;)U )
where h, g € H1(A"), has a solution X € % (H).

Lemma 11. The condition BB* € 'H_, helds if and only if
B € Z(U, H 1(A)) is an admissible control operator for the se-
migroup T'(t) € £(H), t > 0.

Summing up, the condition (47) (or one of its equivalent forms)
is a necessary and sufficient condition for the existence of transfor-
mation (7) with the required properties (9)-(11). Under this condi-
tion M (t) € Z(H),t > 0, can be found by solving (46).

Thus under appropriate conditions we can arrive at two-
point boundary value problem (12) with wy(0) = 2,(0) € H

and wa(7) = =z2(r) € H2(A"). It is clear that wi(-) €
C(o,7]; H) n C*([0,7]; H-1(A)) and if we extend the fi-
nal condition to wa(7) = x2(r) € H then also wa(-) €

C([0,7]; H)NCH ([0, 7]; H-1(A*)). Consequently, it follows from
the relation (12) that for 21(0) € H and x2(7) € H we have
z1() € C([0,7]; H) and z2(-) € C([0,7]; H), where the pair

PAK 1/2004

[z1(t) 2z2(t)]" is understood as a mild solution to the two-point
boundary value problem (6).

Now we have to take into consideration the fact that in the
system (5) the final condition x2(7) depends on z1(7), namely
72(7) = 21 — x1(7). It follows from (12) for t = 7 that

[ 1) J : { wi () + M (r)wa(r) ] R Y

xa(7) wa (1)
and, after simple manipulations, we get
wa(7) = 21 — (I + M(7)) " (wi(r) + M(7)z1). (50)

Thus we finally obtain the system of differential equations

{ z:g J T { ﬁ —?4* J [ Z;EQ J . teor], (1

with the following initial-final conditions

[ ZJ;ES% ] y [ 2= (“rM(T))_:ri?”rvl(’f)JrM('f)h) J ’

where xo € H and z1 € H. Itis casy to see that to compute w, ()
we have to solve the first differential equation of (51) forward in ti-
me and hence also obtain w1 (7). Then having computed M (1) and
w2 (7) we solve the second differential equation of (51) backward
in time and obtain w>(t). So the mild solution to the original two-
point boundary value problem (5) with zo, z1 € H, is obtained via
the relation (12). This relation together with Corollary 10 imply that
for every pair z9, 21 € H the two-point boundary problem (5) has
a unique mild solution

[ ?8 ] € C([o,7]; H) x C([0, 7]; H) (52)

which continuously depends on the data xg and z;.

7. Final remarks

In this paper we have only dealt with the finite time case but it is
also possible to extend the results in a natural way to cover infinite
time horizon. Of course, in the latter case the corresponding Ly-
apunov equation becomes an algebraic one. Although this is a very
interesting topic it is beyond the scope of the current paper.
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