PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modern hybrid joints in arospace: modelling and testing

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nowoczesne połączenia hybrydowe w Lotnictwie: modelowanie i badania eskperymentalne
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is to review different types of modern hybrid joints applied in aerospace. We focused on three particular cases: 1) spot welding - adhesive, 2) rivet-bonded and 3) clinch-bonded joints. The numerical models presented in the paper for these joints describe their complex behaviour under mechanical loading. The numerical calculations performed using ABAQUS code were compared to experimental results obtained by application of the Digital Image Correlation system (DIC) ARAMIS. The results investigated within the paper lead to the following major conclusions: - the strengthening of joints by application of adhesive significantly improve static strength, - the final failure of the joined structural system significantly depends on the surface adhesive area, - the stiffening effects of the hybrid joint lead to higher reliability and durability of the structural joints.
PL
W pracy dokonano przeglądu różnych typów połączeń hybrydowych stosowanych w lotnictwie. Szczególną uwagę zwrócono na trzy typy połączeń: 1) zgrzewanie punktowe - klejenie, 2) nitowanie - klejenie, 3) klinczowanie - klejenie. Modele numeryczne złączy zawarte w pracy, ujawniają złożoną i trudną do przewidzenia reakcję tych złączy na obciążenia mechaniczne. Obliczenia numeryczne porównano z wynikami eksperymentalnymi otrzymanymi za pomocą bezdotykowego systemu pomiaru odkształcen i naprężeń (DIC) ARAMIS. Główne wnioski z prezentowanych badań: - zastosowanie kleju powoduje istotne zwiększenie wytrzymałości statycznej testowanych połączeń, - na końcowy efekt zniszczenia złącza hybrydowego znaczący wpływ ma powierzchnia złącza klejowego, - zwiększona sztywność złączy hybrydowych powoduje, że mają one większą niezawodność i trwałość jako połączenia konstrukcyjne.
Twórcy
autor
autor
autor
autor
  • Lublin University of Technology, 20-618 Lublin, 40 Nadbystrzycka Str., Poland
Bibliografia
  • [1] T. Sadowski, M. Boniecki, Z. Librant, K. Nakonieczny, Theoretical prediction and experimental verification of temperature distribution in FGM cylindrical plates subjected to thermal shock. Int. J. Heat and Mass Transfer 50, 4461-4467 (2007).
  • [2] T. Sadowski, S. Ataya, K. Nakonieczny, Thermal analysis of layered FGM cylindrical plates subjected to sudden cooling process at one side - comparison of two applied methods for problem solution, Comp. Mater. Sci. 45, 624-632 (2009).
  • [3] T. Sadowski, A. Neubrand, Estimation of the crack length after thermal shock in FGM strip, Int. J. Fract. 127, 135-140 (2004).
  • [4] K. Nakonieczny, T. Sadowski, Modelling of thermal shock in composite material using a meshfree FEM, Comp. Mater. Sci. 44, 1307-1311 (2009).
  • [5] T. Sadowski, K. Nakonieczny, Thermal shock response of FGM cylindrical plates with various grading patterns, Comput. Mat. Sci. 43, 171-178 (2008).
  • [6] T. Sadowski, S. Hardy, E. Postek, Prediction of the mechanical response of polycrystalline ceramics containing metallic inter-granular layers under uniaxial tension. Comput. Mat. Sci. 34, 46-63 (2005).
  • [7] T. Sadowski, S. Hardy, E. Postek, A new model for the time-dependent behaviour of polycrystalline ceramic materials with metallic inter-granular layers under tension. Mat. Sci. Eng. A 424, 230-238 (2006).
  • [8] T. Sadowski, E. Postek, Ch. Denis, Stress distribution due to discontinuities in polycrystalline ceramics containing metallic inter-granular layers. Comput. Mat. Sci. 39, 230-236 (2007).
  • [9] T. Sadowski, T. Nowicki, Numerical investigation of local mechanical properties of WC/Co composite, Comput. Mat. Sci. 43, 235-241 (2008).
  • [10] L. F. M. da Silva, P. J. C. das Neves, R. D. Adams, J. K. Spelt, Analytical models of adhesively bonded joints - Part I: Literature survey, Int. J. Adhes. & Adhes. 29, 319-330 (2009).
  • [11] L. F. M. da Silva, P. J. C. das Neves, R. D. Adams, J. K. Spelt, Analytical models of adhesively bonded joints - Part II: Comparative study, Int. J. Adhes. & Adhes. 29, 331-341 (2009).
  • [12] A. V. Pocius, Adhesion and adhesives technology, Hasner, New York (1997).
  • [13] R. D. Adams, J. Comyn W. C. Wake, Structural adhesive joints in engineering. 2nd ed. Chapman&Hall, London (1997).
  • [14] L. F .M. da Silva, A. Öchsner (Eds), Modelling of adhesively bonded joints, Springer (2008).
  • [15] L. F. M. da Silva, A. Öchsner, R.D. Adams, Handbook of Adhesion Technology, Springer (2011).
  • [16] T. Sadowski, P. Golewski, Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC), Comp. Mater. Sci. 50, 1326-1335 (2011).
  • [17] T. Sadowski, P. Golewski, The influence of quantity and distribution of cooling channels of turbine elements on level of stresses in the protective layer TBC and the efficiency of cooling, Comp. Mater. Sci. 52, 293-297 (2012).
  • [18] T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions, Comp. Mater. Sci. 64, 285-288 (2012).
  • [19] T. Sadowski, P. Golewski, The analysis of heat transfer and thermal stresses in thermal barrier coatings under exploitation, Defect and Diffusion Forum 326-328, 530-535 (2012).
  • [20] Z. Wu, J. Li, D. Timmer, K. Lorenzo, S. Bose, Study of processing variables on the electrical resistivity of conductive adhesives, Int. J. Adhes. & Adhes. 29, 488-494 (2009).
  • [21] H. Zhao, T. Liang, B. Liu, Synthesis and properties of copper conductive adhesives modified by SiO2 nanoparticles, Int. J. Adhes. & Adhes. 27, 429-433 (2007).
  • [22] L. F. M. da Silva, A. Öchsner, A. Pirondi (Eds), Hybrid adhesive joints, Springer (2011).
  • [23] T. Sadowski, M. Knec, P. Golewski, Experimental investigations and numerical modelling of steel adhesive joints reinforced by rivets, Int. J. Adh&Adhes 30, 338-346 (2010).
  • [24] T. Sadowski, P. Golewski, E. Zarzeka-Raczkowska, Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets, Comp. Mater. Sci. 50, 1256-1262 (2011).
  • [25] S. M. H. Darwish, Science of weld-adhesive joints, in da Silva, L. F. M., Pirondi, A., Öchsner A. (Eds), Hybrid adhesive joints, (Springer, 2011) p. 1-36.
  • [26] T. Sadowski, M. Knec, P. Golewski, Spot welding-adhesive joints: modelling and testing, J. Adhesion, (under review).
  • [27] A. Pirondi, F. Moroni, Science of Clinch-Adhesive Joints, in Hybrid adhesive joints. Advanced Structured Materials, Volume 6, Springer 2011, L.F.M. da Silva, A. Pirondi, A. Öschner (Eds), pp. 109-147.
  • [28] J. Varis, Ensuring the integrity in clinching process. J. Mater. Proc. Technol. 174, 277-285 (2006).
  • [29] J. Varis, J. Lepistö, A simple testing-based procedure and simulation of the clinching process using finite element analysis for establishing clinching parameters. Thin Walled Struct. 41, 691-709 (2003).
  • [30] M. Oudjenea, L. Ben-Ayed, On the parametrical study of clinch joining of metallic sheets using the Taguchi method, Engineering Structures 30, 1782-1788 (2008).
  • [31] T. Sadowski, T. Balawender, Technology of Clinch - Adhesive Joints, in Hybrid adhesive joints. Advanced Structured Materials, Volume 6, Springer 2011, L. F. M. da Silva, A. Pirondi, A. Öschner (Eds), pp. 149-176.
  • [32] F. Moroni, A. Pirondi, F. Kleiner, Experimental analysis and comparison of the strength of simple and hybrid structural joints, Int. J. Adh&Adhes 30, 367-379 (2010).
  • [33] T. Balawender, T. Sadowski, Experimental and numerical analyses of clinched and adhesively bonded hybrid joints, J. Adhes. Sci Technol. 25, 2391-2407 (2011).
  • [34] T. Balawender, T. Sadowski, M. Knec, Technological problems and experimental investigation of hybrid: clinched - adhesively bonded joint, Arch. Metall. Mat. 56, 439-446 (2011).
  • [35] A. Needleman, A continuum model for void nucleation by inclusion debonding, J. Appl. Mech. 54, 525-531 (1987).
  • [36] V. Tvergaard, J. Hutchinson, The relation between crack growth resistance and fracture process parameters in elastic-plastic solids, J. Mech. Phys. Solids 40, 1377-1397 (1992).
  • [37] E. Postek, T. Sadowski, Assessing the Influence of Porosity in the Deformation of Metal-Ceramic Composites, Composite Interfaces 18, 57-76 (2011).
  • [38] V. Burlayenko, T. Sadowski, Influence of skin/core debonding on free vibration behaviour of foam and honeycomb cored sandwich plates, Int. J. Non-Linear Mechanics 45, 959-968 (2010).
  • [39] V. Burlayenko, T. Sadowski, Analysis of structural performance of aluminium sandwich plates with foam-filled hexagonal foam, Comp. Mater. Sci. 45, 658-662 (2009).
  • [40] L. Marsavina, T. Sadowski, Fracture parameters at bi-material ceramic interfaces under bi-axial state of stress. Comp. Mater. Sci. 45, 693-697 (2009).
  • [41] T. Sadowski, L. Marsavina, N. Peride, E.-M. Craciun, Cracks propagation and interaction in an orthotropic elastic material: analytical and numerical methods, Comput. Mat. Sci. 46, 687-693 (2009).
  • [42] L. Marsavina, T. Sadowski, Kinked cracks at a bi-material ceramic interface - numerical determination of fracture parameters. Comput. Mat. Sci. 44, 941-950 (2009).
  • [43] T. Sadowski, G. Golewski, Effect of aggregate kind and graining on modelling of plain concrete under compression, Comput. Mat. Sci. 43, 119-126 (2008).
  • [44] T. A. Barnes, I. R. Pashby, Joining techniques for aluminium spaceframes used in automobiles. Part II - adhesive bonding and mechanical fasteners. J. Mater. Proc. Technol. 99, 72-79 (2000).
  • [45] H. P. Liebig, J. Bober, R. Beyer, Connecting sheet metal by press joining. Bänder Bleche Rohre 25(9), 7 (1984). Vogel-Verlag, Wurzburg
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0106-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.