PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of texture evolution in KOBO extrusion process

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie rozwoju tekstury w procesie wyciskania metodą KOBO
Języki publikacji
EN
Abstrakty
EN
The paper is aimed at modelling of evolution of crystallographic texture in KOBO extrusion which is an unconventional process of extrusion assisted by cyclic torsion. The analysis comprises two steps. In the first step, the kinematics of the KOBO extrusion process is determined using the finite element method. A simplifying assumption is adopted that the material flow is not significantly affected by plastic hardening, and thus a rigid-viscoplastic material model with no hardening is used. In the second step, evolution of crystallographic texture is modelled along the trajectories obtained in the first step. A micromechanical model of texture evolution is used that combines the crystal plasticity model with a self-consistent grain-to-polycrystal scale transition scheme, and the VPSC code is used for that purpose. Since each trajectory corresponds to a different deformation path, the resulting pole figures depend on the position along the radius of the extruded rod.
PL
Praca jest poświęcona modelowaniu rozwoju tekstury krystalograficznej w procesie wyciskania metodą KOBO - niekonwencjonalnym procesie wyciskania przy udziale cyklicznego skręcania. Analiza jest prowadzona w dwóch krokach. W pierwszym kroku, przy pomocy metody elementów skończonych, wyznaczane jest pole deformacji w procesie KOBO przy upraszczającym założeniu, że nie zależy ono w sposób istotny od umocnienia materiału. W pracy zastosowano model sztywno-lepkoplastyczny bez umocnienia. W drugim kroku, modelowany jest rozwój tekstury krystalograficznej wzdłuż trajektorii wyznaczonych w pierwszym kroku. W tym celu wykorzystano mikromechaniczny model łączacy model plastyczności kryształów i samozgodny schemat przejścia mikro-makro zaimplementowany w programie VPSC. Poniewaz ścieżka deformacji jest inna dla każdej trajektorii, wynikowe figury biegunowe wykazują zależność od położenia wzdłuż promienia wyciskanego pręta.
Twórcy
  • Institute of Fundamental Technological Research (IPPT), 02-106 Warsaw, 5b Pawinskiego Str., Poland
Bibliografia
  • [1] R. Hill, and J. R. Rice, Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids 20, 401-413 (1972).
  • [2] R. J. Asaro, Micromechanics of crystals and polycrystals. Adv. Appl. Mech. 23, 1-115 (1983).
  • [3] R. J. Asaro, and A. Needleman, Texture development and strain hardening in rate dependent polycrystals. Acta metall. 33(6), 923-953 (1985).
  • [4] S. R. Kalidindi, and L. Anand, Macroscopic shape change and evolution of crystallographic texture in pre-textured fcc metals. J. Mech. Phys. Solids 42, 459-490 (1994).
  • [5] K. Kowalczyk, and W. Gambin, Model of plastic anisotropy evolution with texture - dependent yield surface. Int. J. Plasticity 20, 19-54 (2004).
  • [6] P. Van Houtte, On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory for partially constrained plastic deformation of crystal. Mater. Sci. Eng. 55, 69-77 (1982).
  • [7] T. Leffers, and D. Juul Jensen, The relation between texture and microstructure in rolled fcc materials. Text. Microstruct. 14-18, 933-952 (1991).
  • [8] P. Van Houtte, S. Li, M. Seefeldt, and L. Delannay, Deformation texture prediction: from the Taylor model to the advanced Lamel model. Int. J. Plasticity 21, 589-624 (2005).
  • [9] K. Kowalczyk-Gajewska, Micromechanical modelling of metals and alloys of high specific strength. Prace IPPT 1/2011, Warszawa 2011.
  • [10] Y. Estrin, L.S. Toth, A. Molinari, and Y. Bréchet, A dislocation-based model for all hardening stages in large strain deformation. Acta mater. 46, 5509-5522 (1998).
  • [11] P. Van Houtte, Simulation of the rolling texture and shear texture of brass by the Taylor theory adapted for mechanical twinning. Acta Metal. 26, 591-604 (1978).
  • [12] C. N. Tomé, R. A. Lebensohn, and U.F. Kocks, A model for texture development dominated by deformation twinning: application to zirconium alloy. Acta Metal. Mater. 39, 2667-2680 (1991).
  • [13] G. Proust, C.N. Tomé, and G.C. Kaschner, Modeling texture, twinning and hardening evolution during deformation of hexagonal materials. Acta Mater. 55, 2137-2148 (2007).
  • [14] K. Kowalczyk-Gajewska, Modelling of texture evolution in metals accounting for lattice reorientation due to twinning. Eur. J. Mech. Solids/A 29, 28-41 (2010).
  • [15] R. A. Lebensohn, and C.N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall. Mater. 41, 2611-2624 (1993).
  • [16] I. J. Beyerlein, and L.S. Toth, Texture evolution in equal-channel angular extrusion. Progress Mater. Sci. 54, 427-510 (2009).
  • [17] V. M. Segal, Materials processing by simple shear. Mater. Sci. Eng. A 197, 157-164 (1995).
  • [18] R. Z. Valiev, and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress Mater. Sci. 51, 881-981 (2006).
  • [19] M. Ortiz, and E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47, 397-462 (1999).
  • [20] C. Miehe, M. Lambrecht, and E. Gurses, Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: evolving deformation microstructures in finite plasticity. J. Mech. Phys. Solids 52, 2725-2769 (2004).
  • [21] D. M. Kochmann, and K. Hackl, The evolution of laminates in finite crystal plasticity: a variational approach. Continuum Mech. Thermodyn. 23, 63-85 (2011).
  • [22] H. Petryk, and M. Kursa, Selective symmetrization of the slip-system interaction matrix in crystal plasticity. Arch. Mech. 63, 287-310 (2011).
  • [23] H. Petryk, and M. Kursa, The energy criterion for deformation banding in ductile single crystals. J. Mech. Phys. Solids (2013), Submitted.
  • [24] H. Petryk, and S. Stupkiewicz, A quantitative model of grain refinement and strain hardening during severe plastic deformation. Mater. Sci. Eng. A 444, 214-219 (2007).
  • [25] M. Richert, H. Petryk, and S. Stupkiewicz, Grain refinement in AlMgSi alloy during cyclic extrusion-compression: experiment and modelling. Arch. Metall. Mater. 52(1), 49-54 (2007).
  • [26] H. Petryk, S. Stupkiewicz, and R. Kuziak, Grain refinement and strain hardenig in IF steel during multi-axis compression: Experiment and modelling. J. Mat. Proc. Technol. 204, 255-263 (2008).
  • [27] H. Petryk, and S. Stupkiewicz, Modelling of microstructure evolution on complex paths of large plastic deformation. Int. J. Mat. Res. 103, 271-277 (2012).
  • [28] A. Korbel, and W. Bochniak, The structure based design of metal forming operations. J. Mat. Proc. Technol. 53, 229-237 (1995).
  • [29] W. Bochniak, and A. Korbel, Plastic flow of aluminium extruded under complex conditions. Mater. Sci. Techn. 16, 664-669 (2000).
  • [30] W. Bochniak, K. Marszowski, and A. Korbel, Theoretical and practical aspects of the production of thin-walled tubes by the KOBO method. J. Mat. Proc. Technol. 169, 44-53 (2005).
  • [31] A. Zmudzki, W. Wajda, H. Paul, and M. Pietrzyk, Assessment of energy balance in the extrusion process characterized by strain path change induced by deformation. Rudy Metale 51, 260-266 (2006). (in Polish).
  • [32] J. Maciejewski, and Z. Mróz, An upper-bound analysis of axisymmetric extrusion assited by cyclic torsion. J. Mat. Proc. Technol. 206, 333-344 (2008).
  • [33] K. Kowalczyk-Gajewska, Z. Mróz, and R.B. Pecherski, Micromechanical modelling of polycrystalline materials under non-proportional deformation paths. Arch. Metall. Mater. 52, 181-192 (2007).
  • [34] L. Anand, Single-crystal elasto-viscoplasticity: application to texture evolution in polycrystalline metals at large strain. Comput. Methods Appl. Mech. Engrg. 193, 5359-5383 (2004).
  • [35] K. Kowalczyk-Gajewska, and R.B. Pecherski, Phenomenological description of the effect of micro-shear banding in micromechanical modelling of polycrystal plasticity. Arch. Metall. Mater. 54, 1145-1156 (2009).
  • [36] A. Molinari, G.R. Canova, and S. Ahzi, Self-consistent approach of the large deformation polycrystal visco-plasticity. Acta Metall. 35, 2983-2994 (1987).
  • [37] R. Masson, M. Bornert, P. Suquet, and A. Zaoui, An affine formulation for the prediction of the effective properties of non-linear composites and polycrystals. J. Mech. Phys. Solids 48, 1203-1227 (2000).
  • [38] J. Pospiech, A. Korbel, J. Bonarski, W. Bochniak, and L. Tarkowski, Microstructure and texture of Mg-based AZ alloys after heavy deformation under cyclic strain path change conditions. Mater. Sci. Forum 584-586, 565-570 (2008).
  • [39] A. Korbel, L. Błaz, F. Stalony-Dobrzanski, J. Bonarski, L. Tarkowski, and J. Pospiech, Characterization methods for metallic materials deformed in the large strain regime (in Polish). Presented at PlastMet VI Seminar, Łancut 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0106-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.