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Hybrid synchronization of n–scroll Chua and Lur’e

chaotic systems via backstepping control

with novel feedback

SURESH RASAPPAN and SUNDARAPANDIAN VAIDYANATHAN

This paper investigates the backstepping control design with novel feedback input ap-
proach for controlling chaotic systems to guarantee the complete synchronization as well as
the anti-synchronization of chaotic systems, viz. n–scroll Chua (K. Wallace et.al. 2001) and
Lur’e chaotic systems. Our theorems on hybrid synchronization for n–scroll Chua and Lur’e
(J.Suyken et.al. 1997) chaotic systems is established using Lyapunov stability theory. Based on
the Lyapunov function, the backstepping control is determined to tune the controller gain based
on the precalculated feedback control inputs. The backstepping scheme is recursive procedure
that links the choice of a Lyapunov function with the design of a controller and guarantees
global stability performance of strict-feedback chaotic systems. Since the Lyapunov exponents
are not required for these calculations, the backstepping control method is effective and conve-
nient to synchronize the chaotic systems. Mainly this technique gives the flexibility to construct
a control law. Numerical simulations are also given to illustrate and validate the hybrid synchro-
nization results derived in this paper.

Key words: chaos, hybrid-synchronization, n–scroll Chua system, Lur’e system, backstep-
ping control

1. Introduction

Chaos is a strange random aggregate of responses to internal and external stimuli in

dynamic systems. It is highly sensitive towards initial conditions. That is to say, chaotic

systems starting off from very similar initial states can develop into radically divergent

ways. Such sensitive dependence is often referred to as the Butterfly effect. The theories

and methods developed for controlling nonlinear systems could be utilized for synchro-

nization of chaotic systems. In general, synchronization research has been focused on

two areas. The first one work with the state observers, where the main applications per-

tain to the synchronization of nonlinear oscillators. The second one is the use of control
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laws, which allows to achieve the synchronization between nonlinear oscillators, with

different structure and order.

The synchronization of chaotic system was first researched by Yamada and Fu-

jisaka [1] with subsequent work by Pecora and Carroll [2, 3]. The synchronization of

chaos is one way of explaining sensitive dependence on initial conditions [4, 5]. It has

been established that the synchronization of two chaotic systems, that identify the ten-

dency of two or more systems are coupled together to undergo closely related motions.

The problem of chaos synchronization is to design a coupling between the two systems

such that the chaotic time evaluation becomes ideal. The output of the slave system

asymptotically follows the output of the master system i.e. the output of the master sys-

tem controls the slave system.

The synchronization for chaotic systems has been widespread to the scope, such as

generalized synchronization [6], phase synchronization [7], lag synchronization, pro-

jective synchronization [8], generalized projective synchronization [9, 10, 11, 12] and

even anti-synchronization. The property of anti-synchronization establish a predominat-

ing phenomenon in symmetrical oscillators, in which the state vectors have the same

absolute values but opposite signs. When synchronization and anti-synchronization co-

exist, simultaneously, in chaotic systems, the synchronization is called hybrid synchro-

nization [13, 14, 15].

Various control methods have been developed in order to synchronize chaotic sys-

tems which includes for ensuring the control and synchronization of such systems and

have demonstrated their potential applications in various fields including chaos gen-

erator design, such as secure communication [16, 17], physical systems [18], chemi-

cal reaction [19], ecological systems [20], information science [21], energy resource

systems [22], ghostburster neurons [23], bi-axial magnet models [24], neuronal mod-

els [25, 26], IR epidemic models with impulsive vaccination [27] and predicting the

influence of solar wind to celestial bodies [28], etc. So far a variety of impressive ap-

proaches have been proposed for the synchronization of the chaotic systems such as

the OGY method [29], sampled feedback synchronization method, time delay feedback

method [30], adaptive design method [31, 32, 33], sliding mode control method [34, 35],

active control method [36, 37], etc.

Recently, backstepping method has been developed for designing controllers to con-

trol the chaotic systems [38, 39]. A common concept of the method is the synchroniza-

tion of chaotic system. The backstepping method is based on the mathematical model

of the examined system, introducing new variables into it in a form depending on the

state variables, controlling parameters, and stabilizing functions. The difficult work of

synchronizing the chaotic system is to remove nonlinearities done in the system and

influencing the stability of state operation. The use of backstepping method creates an

additional non-linearity and eliminates undesirable nonlinearities from the system.

In this paper, backstepping control design with novel feedback input approach is

proposed. This approach is a systematic design approach and guarantees global stability

of the n–scroll Chua (K. Wallace et.al. [40]) and Lur’e (J.Suyken et.al. [41, 42] ) chaotic

systems. Based on the Lyapunov function, the backstepping control is determined to
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tune the controller gain based on the precalculated feedback control inputs. We organize

this paper as follows. In Section 2, we present the methodology of chaos hybrid syn-

chronization by backstepping control method. In Section 3, we give a description of the

chaotic systems discussed in this paper. In Section 4, we demonstrate the chaos hybrid

synchronization of identical n–scroll Chua systems [40]. In Section 5, we demonstrate

the chaos hybrid synchronization of identical Lur’e systems In Section 6, we demon-

strate the chaos hybrid synchronization of n–scroll Chua and Lur’e systems. In Section

7, we summarize the results obtained in this paper.

2. The problem statement and methodology

In general, the two dynamic systems in hybrid synchronization are called the master

and slave system, respectively. Well designed controller makes the trajectory of the slave

system track the trajectory of the master system, that is, the two systems are synchronous.

Consider the dynamics of nonlinear systems whose trajectories have chaotic attrac-

tor:

ẋ1 = F1(x1,x2, ...,xn)

ẋ2 = F2(x1,x2, ...,xn)

ẋ3 = F3(x1,x2, ...,xn) (1)

...

ẋn = Fn(x1,x2, ...,xn)

where x(t)∈R is state vectors of the system. Assume that the master system is described

by (1) and the slave system which is coupled to (1) with the controller u is defined by:

ẏ1 = G1(y1,y2, ...,yn)+u1(t)
ẏ2 = G2(y1,y2, ...,yn)+u2(t)
ẏ3 = G3(y1,y2, ...,yn)+u3(t) (2)

...

ẏn = Gn(y1,y2, ...,yn)+un(t)

where x(t) ∈ R
n is a state vectors of the system and Fi,Gi(i = 1,2,3, ...n) are linear and

nonlinear functions with inputs from systems (1) and (2). If Fi equals to Gi, then the

systems states are identical, otherwise the systems’ states are non identical. The chaotic

systems (1) and (2) depends not only on state variables but also on time t. The problem

is to analyze the synchronization between two chaotic systems and to transform it to

another problem, namely how to choose the control law ui, i = 1,2,3, ...,n to make the

difference between these two systems, ei, i = 1,2,3, ...,n converge to zero with the time

increasing.
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In order to observe the synchronization behavior in master and slave systems, we

have introduced the control functions ui, i = 1,2,3, ...,n for the purpose of synchroniz-

ing the master and slave systems in spite of a different chaotic systems which is the

extreme case of master/slave mismatch. To estimate the control functions, we subtract

(1) from (2), and define the hybrid synchronization error system as the differences be-

tween the slave system (2) and the controlled master system. Let us define the error

variables between the slave system (2) that is to be controlled and the controlling master

system (1) as

ei = yi ± xi, i = 1,2,3, ...,n.

Then the synchronization error dynamics is obtained as

ė1 = G1(y1,y2, ...,yn)−F1(x1,x2, ...,xn)+u1(t)
ė2 = G2(y1,y2, ...,yn)+F2(x1,x2, ...,xn)+u2(t)
ė3 = G3(y1,y2, ...,yn)−F3(x1,x2, ...,xn)+u3(t) (3)

...

ėn = Gn(y1,y2, ...,yn)−Fn(x1,x2, ...,xn)+un(t).

The hybrid synchronization error system controls a controlled chaotic system with con-

trol input ui, i = 1,2,3, ...,n as a function of the error states e1,e2,e3, .....,en.That means

the systematic feedbacks so as to stabilize the error dynamics (3), e1,e2,e3, .....,en con-

verge to zero as time t → ∞. This implies that the controllers ui, i = 1,2,3, ...,n should

be designed so that the two chaotic systems can be synchronized. Mathematically this

means

lim
t−→∞

‖e(t)‖= 0.

Backstepping design is recursive method which can guarantee global stable perfor-

mance of strict-feedback nonlinear systems. By using the backstepping design, at the i th

step, the i th order subsystem is stabilized with respect to a Lyapunov function Vi, by the

design of virtual control αi and a control input function ui.

We consider the stability problem of the system

ė1 = G1(y1,y2, ...,yn)−F1(x1,x2, ...,xn)+u1(t) (4)

where u1 is control input, which is the function of the error state vectors ei, and the state

variables x(t)∈R
n, y(t)∈R

n. As long as this feedback stabilize the system (4) converge

to zero as the time t → ∞, where e2 = α1(e1) is regarded as virtual controller..

For the design of α1(e1) to stabilize the subsystem (4), we consider the Lyapunov

function defined by

V1(e1) = eT
1 P1e1. (5)

The derivative of V1 is

V̇1 =−eT
1 Q1e1 (6)
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where Q1 is a positive definite matrix. Then V̇1 is a negative definite function on R
n.

Thus by Lyapunov stability theory [43] the error dynamics (4) is asymptotically stable.

The virtual control e2 = α1(e1) and the state feedback input u1 makes the system (4)

asymptotically stable. The function α1(e1) should be estimated while e2 is considered as

controller.

The error between e2 and α1(e1) is

w2 = e2 −α1(e1). (7)

Consider (e1,w2) subsystem given by

ė1 = G1(y1,y2, ...,yn)−F1(x1,x2, ...,xn)
(8)

ẇ2 = G2(y1,y2, ...,yn)+F2(x1,x2, ...,xn)− α̇1(e1)+u2.

Consider e3 as a virtual controller in system (8), assume that it is equal to α2(e1,w2) and

it makes the system (8) asymptotically stable. Consider the Lyapunov function defined

by

V2(e1,w2) =V1(e1)+wT
2 P2w2. (9)

The derivative of V2 is

V̇2 =−eT
1 Q1e1 −wT

2 Q2w2 < 0 (10)

where Q1,Q2 are positive definite matrices. Then V̇2 is a negative definite function on

R
n. Thus by Lyapunov stability theory the error dynamics (8) is asymptotically stable.

The virtual control e3 = α2(e1,w2) and the state feedback input u2 make the system (8)

asymptotically stable. For the nth state of the error dynamics, define the error variable

wn as

wn = en −αn−1(e1,w2,w2, ...,wn). (11)

Consider (e1,w2,w2, ...,wn) subsystem given by

ė1 = G1(y1,y2, ...,yn)−F1(x1,x2, ...,xn)

ẇ2 = G2(y1,y2, ...,yn)+F2(x1,x2, ...,xn)− α̇1(e1)

... (12)

ẇn = Gn(y1,y2, ...,yn)−Fn(x1,x2, ...,xn)

−α̇n−1(e1,w2,w3, ...,wn)+un.

Consider the Lyapunov function defined by

Vn(e1,w2,w3, ...,wn) = Vn−1(e1,w2,w3, ...,wn−1)+wT
n Pnwn. (13)

The derivative of Vn is

V̇n =−eT
1 Q1e1 −wT

2 Q2w2 − ....−wT
n Qnwn < 0 (14)
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where Q1, Q2, Q3, ..., Qn are positive definite matrices. Then V̇n is a negative definite

function on R
n. Thus by Lyapunov stability theory the error dynamics (12) is stable. The

virtual control en = αn−1(e1,w2,w3, ...,wn−1) and the state feedback input un makes the

system (12) asymptotically stable. Thus by Lyapunov stability theory, the error dynamics

(3) is globally exponentially stable for all initial conditions e(0) ∈ R
n. Hence, the states

of the master and slave systems are globally and exponentially synchronized.

3. The system description

The first system in which we are interested is the n–scroll Chua system which is an

improved model of chaotic system introduced by K. Wallace et.al. [40]. The second sys-

tem is derived from Lur’e system. Both systems can be derived from simplified, generic

electrical circuit.

3.1. The n–scroll Chua system

The dynamical equation of n–scroll Chua system with sine function [40], is given by

ẋ1 = α(x2 − f (x1))

ẋ2 = x1 − x2 + x3 (15)

ẋ3 = −βx2

where x1, x2, x3 are state variables and f (x1), given by

f (x1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bπ
2a

(x1 −2ac) if x1 � 2ac

−bsin
(πx1

2a
+d

)
if −2ac� x1 � 2ac

bπ
2a

(x1 +2ac) if x1 �−2ac

is the piecewise linear function and is the only nonlinearity in the system. A sine function

is couched to obtain the nonlinearity needed for generating chaos in Chua system. α, β,

a, b, c and d are positive constants. When

α = 10.814, β = 14.0, a = 1.3, b = 0.11 (16)

2-scroll, 3-scroll, 4-scroll and 6-scroll attractors are generated with c = 1, 2, 3, and 5

respectively, as depicted in Fig. 1(a)-(d). A maximum of six scroll can be observed.

3.2. Lur’e chaotic system

The dynamical equation of Lur’e system (J. Suyken et.al. [41, 42]) with sign function

is given by
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Figure 1. (a). Phase orbit of 2–scroll Chua system when c = 1, (b). Phase orbit of 3–scroll Chua system
when c = 2, (c). Phase orbit of 4–scroll Chua system when c = 3, (d). Phase orbit of 6–scroll Chua system
when c = 5.

ẋ1 = x2

ẋ2 = x3 (17)

ẋ3 = ax1 +bx2 + cx3 +12φ(x1)

where x1, x2, x3 are state variables. Function φ(x1) is given by

φ(x1) =

{
kx1 if |x1|� 1

k

sign(x1) otherwise

where a, b, c and k are positive real constants. When

a =−7.4, b =−4.1, c =−1, k = 3.6 (18)

the chaotic attractors are generated as shown in Fig. 2.
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Figure 2. Phase orbits of Lur’e system.

4. The hybrid synchronization of identical n–scroll Chua systems
via backstepping control design with novel feedback

In this section we apply the backstepping method with novel feedback function for

the hybrid synchronization of identical Chua systems [40]. The master system is de-

scribed by the chaotic n-scroll Chua’s system dynamics (15) with parameters (16) which

allows generating 2-scroll, 3-scroll, 4-scroll and 6-scroll attractors.The salve system is

also described the chaotic n-scroll Chua’s system dynamics

ẏ1 = α(y2 − f (y1))+u1

ẏ2 = y1 − y2 + y3 +u2 (19)

ẏ3 = −βy2 +u3
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where f (y1) is given by

f (y1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bπ
2a

(y1 −2ac) if y1 � 2ac

−bsin
(πy1

2a
+d

)
if −2ac� y1 � 2ac

bπ
2a

(y1 +2ac) if y1 �−2ac

and y(t)(i = 1, 2, 3)∈R is a state vectors of the system. Let us define the error variables

between the slave system (19) that is to be controlled and the controlling master system

(15) as

ei = yi ± xi, i = 1, 2, 3, ...,n.

The error dynamics is obtained as

ė1 = αy2 −αx2 −α[ f (y1)− f (x1)]+u1

ė2 = y1 + x1 − e2 + y3 + x3 +u2 (20)

ė3 = −βy2 +βx2 +u3.

We introduce the backstepping procedure to design the controller ui, i = 1, 2, 3 where

ui are the control feedbacks. As long as these feedbacks stabilize system (20), the error

converges to zero as the time t → ∞.

Firstly we consider the stability of the system

ė1 = αy2 −αx2 −α[ f (y1)− f (x1)]+u1 (21)

where e2 is regarded as virtual controller. The Lyapunov function is defined by

V1(e1) =
1

2
e2

1 (22)

and its derivative is as follows

V̇1 = e1(−e2 − e1). (23)

Assume the controller e2 = α1(e1). If α1(e1) = 0 and

u1 = αx2 −αy2 +α( f (y1)− f (x1))− e2 − e1

then

V̇1 =−e2
1

which is negative definite function. The recursive feedback u1 and α1(e1) makes the

system (20) asymptotically stable. Function α1(e1) is the estimating function when e2 is

considered as a controller. The error between e2 and α1(e1) is

w2 = e2 −α1(e1). (24)
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Consider (e1,w2) subsystem given by

ė1 = −e2 − e1
(25)

ẇ2 = y1 + x1 − e2 + y3 + x3 +u2

and e3 as a virtual controller in system (25). Assume that if it is equal to α2(e1,w2), then

it makes system (25) asymptotically stable. Now the Lyapunov function is defined by

V2(e3,w2) =V1(e1)+
1

2
w2

2. (26)

The derivative of V2(e3,w2) is

V̇2 =−e2
1 +w2

2(−w2 + e3). (27)

If α2(e1,w2) = 0 and

u2 = e1 − y1 − x1 − y3 − x3 + e3

then

V̇2 =−e2
1 −w2

2

which is negative definite function. The recursive control u2 and α2(e1,w2) makes the

system (25) asymptotically stable. Define the error variable w3 as

w3 = e3 −α2(e1,w2). (28)

Consider (e1,w2,w3) subsystem given by

ė1 = −e1 −w2

ẇ2 = e1 −w2 +w3 (29)

ẇ3 = βy2 +βx2 +u3

and the Lyapunov function defined by

V3(e1,w2,w3) =V2(e1,w2)+
1

2
w2

3. (30)

The derivative of V3(e3,w2,w3) is

V̇3 =−e2
1 −w2

2 +w3(w2 −βy2 +βx2 +u3). (31)

If u3 = βy2 −βx2 −w2 −w3 then

V̇3 =−e2
1 −w2

2 −w2
3

which is negative definite function. The recursive feedback u3 makes the system (29)

asymptotically stable. Thus, by Lyapunov stability theory [43], the error dynamics (20)

is globally exponentially stable. Hence, we obtain the following result.
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Theorem 1 The identical n–scroll Chua’s systems (15) and (19) are globally and expo-
nentially hybrid synchronized with the backstepping controls

u1 = αx2 −αy2 +α( f (y1)− f (x1))− e2 − e1

u2 = e1 − y1 − x1 − y3 − x3 + e3 (32)

u3 = βy2 −βx2 −w2 −w3.

Numerical simulation

For the numerical simulations, the fourth order Runge-Kutta method is used to solve

the system of differential equations (15) and (19) with the backstepping controls u1, u2

and u3 given by (32). The parameters of the systems (15) and (19) are

α = 10.814, β = 14.0, a = 1.3, b = 0.11, c = 3.

Initial value of the master system (15) are chosen as

x1(0) = 0.125, x2(0) = 0.625x3(0) = 0.941

and slave system (19) are chosen as

y1(0) = 0.874, y2(0) = 0.465, y3(0) = 0.596

Fig. 3 (a) and (b) depict the hybrid synchronization of identical n–scroll Chua’s systems

(15) and (19).

5. The hybrid synchronization of identical Lur’e systems via backstepping
control design with novel feedback

In this section we apply the backstepping method with novel feedback function for

the hybrid synchronization of identical Lur’e systems [41, 42]. The master system is

described by the chaotic Lur’e dynamics (17) with parameters (18).

The slave system also described by Lur’e dynamic sa follows

ẏ1 = y2 +u1

ẏ2 = y3 +u2 (33)

ẏ3 = ey1 + f y2 +gy3 +12φ(y1)+u3

where φ(y1) is given by φ(x1) =

{
ky1 if |y1|� 1

k

sign(y1) otherwise

y(t)(i = 1,2,3) ∈ R
3 is a state vectors of the system. Let us define the error variables
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Figure 3. (a). The hybrid synchronization of identical n–scroll Chua’s system, (b). Error plot for identical
n–scroll Chua’s system.
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between the slave system (33) that is to be controlled and the controlling master system

(17) as

ei = yi ± xi, i = 1,2,3, ...,n.

The error dynamics is obtained as

ė1 = y2 − x2 +u1

ė2 = x3 + y3 +u2 (34)

ė3 = ae1 +b(y2 − x2)+ ce3 +12(φ(y1)−φ(x1))+u3.

We introduce the backstepping procedure to design the controller ui, i = 1,2,3, where

ui, i = 1,2,3 are control feedbacks. As long as these feedbacks stabilize system (34)

error converges to zero as time goes to infinity.

Firstly we consider the stability of the system

ė1 = y2 − x2 +u1 (35)

where e2 is regarded as virtual controller. We consider the Lyapunov function defined by

V1(e1) =
1

2
e2

1 (36)

and its the derivative as follows

V̇1 = e1(y2 − x2 +u1). (37)

Assume the controller e2 = α1(e1). If

u1 = x2 − y2 − e1 + e2

and α1(e1) = 0 then

V̇1 =−βe2
1

which is negative definite function. The recursive feedback control u1 and α1(e1) makes

the system (35) asymptotically stable. Function α1(e1) is an estimating function when

e2 is considered as a controller. The error between e2 and α1(e1) is

w2 = e2 −α1(e2) (38)

Consider (e1,w2) subsystem given by

ė1 = w2 − e1 (39)

ẇ2 = x3 + y3 +u2

and e3 as a virtual controller in system (39). Assume that it is equal to α2(e3,w2) and it

makes system (39) asymptotically stable. Consider the Lyapunov function defined by

V2(e1,w2) =V1(e1)+
1

2
w2

2. (40)
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The derivative of V2(e1,w2) is

V̇2 =−e2
1 +w2(w2 + x3 + y3 +u2). (41)

If

u2 =−e1 −w2 + e3 − x3 − y3

and α2(e1,w2) = 0 then

V̇2 =−e2
1 −w2

2

which is negative definite function. The recursive feedback u2 and α2(e1,w2) makes the

system (39) asymptotically stable. Define the error variable w3 as

w3 = e3 −α2(e1,w2). (42)

Consider (e1,w2,w3) subsystem given by

ė1 = w2 − e1

ẇ2 = w3 −w2 − e1 (43)

ẇ3 = ae1 +b(y2 − x2)+ ce3 +12(φ(y1)−φ(x1))+u3.

Consider the Lyapunov function defined by

V3(e1,w2,w3) =V2(e1,w2)+
1

2
w2

3. (44)

The derivative of V3(e1,w2,w3) is

V̇3 = −e2
1 −w2

2 +w3((a−b−2)e1

+(b−2−2c+1)w2 +(2+ c)w3

+12(φ(y1)−φ(x1))+u3).

(45)

If
u3 = −w2 −w3 −ae1 −b(y2 − x2)− ce3

−12(φ(y1)−φ(x1))
(46)

then

V̇3 =−e2
1 −w2

2 −w2
3

which is negative definite function. The recursive feedback u3 makes the system (43)

asymptotically stable.Thus, by Lyapunov stability theory, the error dynamics (34) is

globally exponentially stable. Hence, we obtain the following result.
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Theorem 2 The identical Lur’e systems (17) and (33) are globally and exponentially
hybrid synchronized with the backstepping controls

u1 = x2 − y2 − e1 + e2

u2 = u2 =−e1 −w2 + e3 − x3 − y3

(47)
u3 = −w2 −w3 −ae1 −b(y2 − x2)− ce3

−12(φ(y1)−φ(x1))

Numerical Simulation

For the numerical simulations, the fourth order Runge-Kutta method is used to solve

the system of differential equations (17) and (33) with the backstepping controls u1,u2

and u3 given by (47). The parameters of the systems (17) and (33) are taken in the chaotic

case as

a =−7.4, b =−4.1, c =−1. k = 3.6.

The initial value of the master system (17) are chosen as

x1(0) = 0.785, x2(0) = 0.943, x3(0) = 0.212

and slave system (33) are chosen as

y1(0) = 0.253, y2(0) = 0.558, y3(0) = 0.756

Fig. 4 (a) and (b) depict the synchronization of identical Lur’e systems (17) and (33).

6. The hybrid synchronization of n–scroll Chua system and Lur’e system via
backstepping control design with novel feedback

In this section we apply the backstepping method with novel feedback function for

the hybrid synchronization of n–scroll Chua [40] and Lur’e systems [41, 42]. The master

system is described by the chaotic n-scroll Chua’s system dynamics (15) with parameters

(16).

The slave system is described by Lur’e system as follows

ẏ1 = y2 +u1

ẏ2 = y3 +u2 (48)

ẏ3 = ηy1 +θy2 +λy3 +12φ(y1)+u3

where φ(y1) is given by φ(y1) =

{
ky1 if |y1|� 1

k

sign(y1) otherwise
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Figure 4. (a). The hybrid synchronization of identical Lur’e system, (b). Error plot for identical Lur’e
system.
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where y(t)(i = 1,2,3)∈R
3 is a state vectors of the system, η, θ, λ and k are positive real

constants. When

η =−7.4, θ =−4.1, λ =−1, k = 3.6

the chaotic attractors are generated. Let us define the error variables between the slave

system (48) that is to be controlled and the controlling master system (15) as

ei = yi ± xi, i = 1,2,3, ...,n.

The error dynamics is obtained as

ė1 = y2 −α(x2 − f (x1))+u1

ė2 = y3 + x1 − x2 + x3 +u2 (49)

ė3 = ηy1 +θy2 +λy3 +12φ(y1)+βx2 +u3

We introduce the backstepping procedure to design the controller ui, i = 1,2,3 where

ui, i = 1,2,3 are control feedbacks. As long as these feedbacks stabilize system (49), the

error converge to zero as the time t goes to infinity. Firstly we consider the stability of

the system

ė1 = y2 −α(x2 − f (x1))+u1 (50)

where e2 is regarded as virtual controller. We consider the Lyapunov function defined by

V1(e1) =
1

2
e2

1. (51)

The derivative of V1 is as follows

V̇1 = e1(y2 −α(x2 − f (x1))+u1). (52)

Assume the controller e2 = α1(e1). If α1(e1) = 0 and the feedback input

u1 =−e1 + e2 − y2 +α(x2 − f (x1))

then

V̇1 =−e2
1

which is negative definite function. The recursive feedback u1 and α1(e1) makes the

system (50) asymptotically stable. Function α1(e1) is an estimating function when e2 is

considered as a controller. The error between e2 and α1(e1) is

w2 = e2 −α1(e1). (53)

Consider (e1,w2) subsystem given by

ė1 = −e1 + e2 (54)

ẇ2 = y3 + x1 − x2 + x3 +u2
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and e3 as a virtual controller in system (54). Assume that the controller equal to

α2(e3,w2) makes system (54) asymptotically stable. Consider the Lyapunov function

defined by

V2(e1,w2) =V1(e1)+
1

2
w2

2. (55)

The derivative of V2(e1,w2) is

V̇2 =−e2
1 +w2(e1 + y3 + x1 − x2 + x3 +u2). (56)

If e3 = α2(e1,w2) = 0 and the feedback input

u2 =−w2 − e1 − y3 − x1 + x2 − x3 + e3

then

V̇2 =−e2
1 −w2

2

which is negative definite function. The recursive feedback u2 and α2(e1,w2) make the

system (54) asymptotically stable. Define the error variable w3 as

w3 = e3 −α2(e1,w2). (57)

Consider (e1,w2,w3) subsystem given by

ė3 = −e1 +w2

ẇ2 = w3 − e1 −w2 (58)

ẇ3 = ηy1 +θy2 +λy3 +12φ(y1)+βx2 +u3.

Consider also the Lyapunov function defined by

V3(e3,w2,w3) =V2(e1,w2)+
1

2
wT

3 w3. (59)

The derivative of V3(e3,w2,w3) is

V̇3 = −e2
1 − (w2

2)+w3(w2 +ηy1 +θy2 +λy3

+12φ(y1)+βx2 +u3).
(60)

If

u3 =−w2 −ηy1 −θy2 −λy3 −12φ(y1)−βx2 −w3

then

V̇3 =−e2
1 − (w2

2)−w2
3

which is negative definite function. The recursive feedback control u3 makes the system

(58) asymptotically stable. Thus, by Lyapunov stability theory, the error dynamics (49)

is globally exponentially stable. Hence, we obtain the following result.
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Theorem 3 The n–scroll Chua’s system (15) and Lur’e chaotic system (48) are glob-
ally and exponentially hybrid synchronized with the backstepping controls design with
feedback inputs

u1 = −e1 + e2 − y2 +α(x2 − f (x1))

u2 = −w2 − e1 − y3 − x1 + x2 − x3 + e3 (61)

u3 = −w2 −ηy1 −θy2 −λy3 −12φ(y1)−βx2 −w3.

Numerical simulation

For the numerical simulations, the fourth order Runge-Kutta method is used to solve

system of differential equations (15) and (48) with the backstepping controls u1,u2 and

u3 given by (61). The parameters of the systems (15) and (48) are taken in the chaotic

case as

α = 10.814, β = 14.0, a = 1.3, b = 0.11, c = 3,d = 0

and

η =−7.4, θ =−4.1, λ =−1;k = 3.6.

The initial value of the master system (15) are chosen as

x1(0) = 0.012, x2(0) = 0.764, x3(0) = 0.064

and slave system (48) are chosen as

y1(0) = 0.984, y2(0) = 0.231, y3(0) = 0.999

Fig. 5 (a) and (b) depict the hybrid synchronization of n–scroll Chua and Lur’e chaotic

systems (15) and (49).

7. Conclusion

In this paper, backstepping control method based on Lyapunov stability theory has

been applied to achieve global chaos hybrid synchronization for the n-scroll Chua and

Lur’e chaotic systems. The advantage of this method is that it follows a systematic pro-

cedure for hybrid synchronizing chaotic system and there is no derivative in the con-

troller. The backstepping control design has been demonstrated on n–scroll Chua and

Lur’e chaotic systems. Numerical simulations have been given to illustrate and validate

the effectiveness of the proposed hybrid synchronization schemes for identical n-scroll

Chua and Lur’e chaotic systems and non-identical n-scroll Chua and Lur’e chaotic sys-

tems. The backstepping method is very effective and convenient to achieve global chaos

hybrid synchronization.

Authenticated | 195.187.97.1
Download Date | 12/12/12 9:27 AM



362 R. SURESH, V. SUNDARAPANDIAN

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

6

x 1, y
1

 

 

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

x 2, y
2

 

 

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

x 3, y
3

Time ( Sec)

 

 

x
1

y
1

x
2

y
2

x
3

y
3

a)

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time ( Sec)

e 1, e
2, e

3

 

 
e

1

e
2

e
3

b)

Figure 5. (a). The Hybrid Synchronization of n–scroll Chua’s and Lur’e chaotic systems, (b). Error plot for
n–scroll Chua’s and Lur’e chaotic systems.
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