Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The problem of computation of initial conditions and inputs for given outputs of fractional standard and positive discrete-time linear systems is formulated and solved. Necessary and sufficient conditions for existence of solution to the problem are established. It is shown that there exist the unique solutions to the problem only if the pair (A, C) of the system is observable.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
145--159
Opis fizyczny
Bibliogr. 15 poz., wzory
Twórcy
autor
- Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland, kaczorek@isep.pw.edu.pl
Bibliografia
- [1] P. J. Antsaklis and A. N. Michel: Linear Systems. Birkhauser, Boston 2006.
- [2] L. Farina and S. Rinaldi: Positive Linear Systems; Theory and Applications. J. Wiley, New York, 2000.
- [3] T. Kaczorek: Positive 1D and 2D systems. Springer Verlag, London 2001.
- [4] T. Kaczorek: Decomposition of the pairs (A, B) and (A, C) of the positive discrete-time linear systems. Archives of Control Sciences, 20(3), (2010), 253-273.
- [5] T. Kaczorek: Vectors and Matrices in Automation and Electrotechnics. WNT, Warszawa, 1998, (in Polish).
- [6] T. Kaczorek: Linear Control Systems. Vol. 1, J. Wiley, New York, 1993.
- [7] T. Kaczorek: Computation of initial conditions and inputs for given output of standard and positive discrete-time linear systems. Computational Problems of Electrical Engineering, 2(1), (2012), (in press).
- [8] T. Kaczorek: Selected Problems of Fractional System Theory. Spronger-Verlag, Berlin, 2011.
- [9] T. Kailath: Linear Systems. Prentice-Hall, Englewood Cliffs, New York, 1980.
- [10] R. E. Kalman: Mathematical Descriptions of Linear Systems. SIAM J. Control, 1 1963, 152-192.
- [11] R. E. Kalman: On the General Theory of Control Systems. Proc. of the First Int. Congress on Automatic Control, Butterworth, London, 1960, 481-493.
- [12] H. H. Rosenbrock: Comments on poles and zeros of linear multivariable systems: a survey of the algebraic geometric and complex variable theory. Int. J. Control, 26(1), 1977, 157-161.
- [13] J. Klamka: Controllability of Dynamical Systems. Kluwer Academic Publisher, 1991.
- [14] H. H. Rosenbrock: State-Space and Multivariable Theory. J. Wiley, New York, 1970.
- [15] W. A. Wolovich: Linear Multivariable Systems. Springer-Verlag, New York, 1974.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0098-0010