PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Generalized semi-opened axial dispersion model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The axial dispersion model (ADM) is studied and then generalized by a new form of the left boundary condition of semi-open flow system. The resulting parameter driven model covers the traditional axial models: axial closed-opened dispersion model with enforced input concentration (AEO), axial closed-opened dispersion model with input Danckwerts' condition (ACO), and axial opened-opened model (AOO). It also enables development of the degraded axial model (ADO). The research is concerned with both modeling and mathematical solution. Also, many numerical aspects of computer realization are discussed.
Rocznik
Strony
59--75
Opis fizyczny
Bibliogr. 16 poz., wzory
Twórcy
autor
autor
autor
  • Faculty of Chemical Engineering, ICT in Prague
Bibliografia
  • [1] J. Čermáková, F. Scargiali, N. Siyakatshana, V. Kudrna, A. Brucato and V. Machoň: Axial dispersion model for solid flow in liquid suspension in system of two mixers in total recycle. Chemical Engineering J., 117(2), (2006), 101-107.
  • [2] T. F. Coleman and A. Verma: A predictioned conjugate gradient approach to linear equality constrained minimization. Computational Optimization and Applications, 20(1), (2001), 61-72.
  • [3] V. A. Ditkin and P.I. Kuznecov: Handbook of operational calculus: Fundamentals of the theory and tables of formulas. Moscow, Mir, 1951.
  • [4] M. P. Dudukovic, F. Larachi, et al.: Multiphase reactors - revisited. Chemical Engineering Science, 54(13-14), (1999), 1975-1995.
  • [5] G. Fodor: Laplace transforms in engineering. Budapest, Acadmiai Kiad, 1965.
  • [6] D. Himmelblau and K.B. Bischoff: Process analysis and simulation. Deterministic systems. New York, John Wiley and Sons, Inc., 1968.
  • [7] V. Kudrna, M. Jahoda, N. Siyakatshana, J. Čermáková and V. Machoň: General solution of the dispersion model for a one-dimensional stirred flow system using Danckwerts' boundary conditions. Chemical Engineering Science, 59(14), (2004), 3013-3020.
  • [8] O. Levenspiel and W.K. Smith: Notes on the diffusion-type model for the longitudinal mixing of fluids in flow. Chemical Engineering Science, 6(4-5), (1957), 227-233.
  • [9] A. D. Martin Interpretation of residence time distribution data. Chemical Engineering Science, 55(23), (2000), 5907-5917.
  • [10] K. F. Riley, M.P. Hobson and S.J. Bence: Mathematical methods for physics and engineering. Cambridge, Cambridge University Press, 2006.
  • [11] D. C. Sorensen: Minimization of a large scale quadratic function subject to an ellipsoidal constraint. Department of Computational and Applied Mathematics, Rice University, Technical Report TR94-27, 1994.
  • [12] C. Y. Wen and L. T. Fan: Models for flow systems and chemical reactors. New York, Marcel Dekker, Inc., 1975.
  • [13] K. R. Westerterp and W. J. A. Wammes: Three-phase trickle-bed reactors. In: Ullmann's Encyclopedia of Industrial Chemistry, Weinheim, Wiley-VCH Verlag GmbH, 2008.
  • [14] D. Bártová: Robust identification methods for systems with axial dispersion. PhD thesis. ICT Prague, 2009.
  • [15] D. Bártová, B. Jakeš and J. Kukal: Axial dispersion models and their basic properties. Archives of Control Sciences, 19(1), (2009), 5-22.
  • [16] A. G. Bondar: Mathematical modelling in chemical technology. Kiev, Vishcza shkola Press, 1973, (in Russian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0098-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.