PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A model for abnormal grain growth in nano-crystalline materials based on Zener drag force

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Model nieprawidłowego wzrostu ziarna w materiałach nanokrystalicznych oparty o siłę pędną Zenera
Języki publikacji
EN
Abstrakty
EN
Abnormal grain growth of a matrix in which normal grain growth has stagnated due to the presence of fine incoherent ceramic particles is studied. A balance between driving and retarding forces is used as the criteria for estimating the steady state. Random and non-random approaches are applied for coarse and nano-grained structure respectively.
PL
Badano nieprawidłowy wzrost ziaren w materiale, w którym prawidłowy wzrost ziaren został zahamowany z powodu obecności drobnych cząsteczek ceramicznych. Równowaga pomiędzy siłami pędną i opóżniającą zostały przyjęte jako kryterium oszacowania stanu równowagi. Zastosowano przypadkowe i nieprzypadkowe podejście odpowiednio do struktury grubo i drobnoziarnistej.
Twórcy
autor
  • Islamic Azad University, Shahrood Branch, Iran
Bibliografia
  • [1] R. Dannenberg, E. A. Stach, J. R. Groza, B. J. Dresser, In-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films, Thin Solid Films 370, 54-62 (2000).
  • [2] A. Afshar, A. Simchi, Abnormal grain growth in alumina dispersion-strengthened copper produced by an internal oxidation process, Scripta Materialia 58, 966-969 (2008).
  • [3] G. D. Hibbard, V. Radmilovic, K. T. Aust, U. Erb, Grain boundary migration during abnormal grain growth in nanocrystalline Ni, Materials Science and Engineering A. 494, 232-238 (2008).
  • [4] M. Ames, J. R. Markmann, R. Karos, A. Michels, A. Tschöpe, R. Birringer, Unraveling the nature of room temperature grain growth in nanocrystalline materials, Acta Materialia 56, 4255-4266 (2008).
  • [5] G. D. Hibbard, J. L. McCrea, G. Palumbo, K. T. Aust, U. Erb, An initial analysis of mechanisms leading to late stage abnormal grain growth in nanocrystalline Ni, Scripta Materialia 47, 83-87 (2002).
  • [6] F. Ebrahimi, H. Li, Grain growth in electrodeposited nanocrystalline fcc Ni-Fe alloys, Scripta Materialia 55, 263-266 (2006).
  • [7] U. Klement, M. D. Silva, Individual grain orientations and texture development of nanocrystalline electrodeposits showing abnormal grain growth, Journal of Alloys and Compounds 434-435, 714-717 (2007).
  • [8] G. J. Fan, L. F. Fu, H. Choo, P. K. Liaw, N. D. Browning, Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys, Acta Materialia 54, 4781-4792 (2006).
  • [9] D.-Y. Yang, S.-J. L. Kang, Suppression of abnormal grain growth in WC-Co via pre-sintering treatment, Int. Journal of Refractory Metals & Hard Materials 27, 90-94 (2009).
  • [10] K. Hattar, D. M. Follstaedt, J. A. Knapp, I. M. Robertson, Defect structures created during abnormal grain growth in pulsed-laser deposited nickel, Acta Materialia 56, 794-801 (2008).
  • [11] S. S. Razavi-Tousi, M. B. Rahaei, M. S. Abdi, S. K. Sadrnezhaad, Stabilization of nanostructured materials using fine inert ceramic particles, Ceramic International. Article in Press, doi:10.1016/j.ceramint.2009.09.018 (2009).
  • [12] S. S. Razavi-Tousi, R. Yazdani-Rad, E. Salahi, M. Razavi, Effect of milling time and addition of alumina powder on the structural properties and fracture surface of nanocrystalline Al, Materials Science Poland 27, 875-884 (2009).
  • [13] S. S. Razavi-Tousi, R. Yazdani-Rad, E. Salahi, I. Mobasherpour, M. Razavi, Production of Al-20 wt.% Al2O3 composite powder using high energy milling, Powder Technology 192, 346-351 (2009).
  • [14] S. C. Tjong, H. Chen, Nanocrystalline materials and coatings, Materials Science and Engineering R 45, 1-88 (2004).
  • [15] O. Grong, H. R. Shercliff, Microstructural modeling in metals processing, Progress in Material Science 24, 163-282 (2002).
  • [16] M. Hillert, On the theory of normal and abnormal grain growth, Acta Materialia 13, 227-238 (1965).
  • [17] A. Rollett, D. Srolovitz, M. Anderson, Acta Materialia 37, 1227 (1989).
  • [18] O. Hunderi, N. Ryum, Computer simulation of stagnation in grain growth, Acta Materialia 29, 1737-1745 (1981).
  • [19] C. S. Smith, Grains, phases and interfaces: an interpretation of microstructure, TRANS. Metall. Soc. A. I. M. E. 175, 15 (1948).
  • [20] F. J. Humphreys, M. Hatherly, Recrystallization and related phenomena: Pergamon 1995.
  • [21] A. Rollett, D. Srolovitz, M. Anderson, R. D. Doherty, Computer simulation of recrystalilzation-III. Influence of a dispersion of fine particles, Acta Materialia 40, 3475-3495 (1992).
  • [22] V. Y. Novikov, Microstructure stabilization in bulk nanocrystalline materials: Analytical approach and numerical modeling, Materials Letters 62, 3748-3750 (2008).
  • [23] L. Anand, J. Gurland, The relationship between the size of cementite particles and the subgrain size in quenched-and-tempered steel, Metallurgical Transaction A 6, 928-931 (1975).
  • [24] P. Hellman, M. Hillert, Effect of Second-Phase Particles on. Grain Growth, Scand Journal of Metals 4, 211 (1975).
  • [25] S. M. H. Haghighat, A. K. Taheri, Investigation of limiting grain size and microstructure homogeneity in the presence of second phase particles using the Monte Carlo method, journal of materials processing technology 195, 195-203 (2008).
  • [26] P. M. Hazzledine, R. D. J. Oldershaw, Computer simulation of Zener pinning, Philosophical Magazine A 61, 579 (1990).
  • [27] N. Maazi, N. Rouag, Consideration of Zener drag effect by introducing a limiting radius for neighbourhood in grain growth simulation, Journal of Crystal Growth 243, 361-369 (2002).
  • [28] D. J. Srolovitz, M. P. Anderson, G. S. Grest, P. S. Sahni, Computer simulation of grain growth-III. Influence of a particle dispersion, Acta Metal 32, 1429 (1984).
  • [29] S. P. Riege, C. V. Thompson, H. J. Frost, Simulation of the influence of particles on grain structure evolution in two-dimensional systems and thin films, Acta Materialia 47, 1879 (1999).
  • [30] M. Hillert, Inhibition of grain growth by second-ohase particles, Acta Metal 36, 3177-3181 (1988).
  • [31] M. P. Anderson, G. S. Grest, K. L. Doherty, D. J. Srolovitz, Inhibition of grain growth by second phase particles: Three dimensional Monte Carlo computer simulations, Scripta Metall 23, 753 (1989).
  • [32] Y. Bréchet, M. Militzer, A note on grain size dependent pinning, Scripta Materialia 52, 1299-1303 (2005).
  • [33] L. A. Timms, C. B. Ponton, M. Strangwood, Processing of Al2O3/SiC nanocomposites-part 2: green body formation and sintering, Journal of the European Ceramic Society 22, 1569-1586 (2002).
  • [34] G. D. Hibbard, K. T. Aust, U. Erb, Thermal stability of electrodeposited nanocrystalline Ni-Co alloys, Materials Science and Engineering A 433, 195-202 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0096-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.