PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Micromechanical model of polycrystalline materials with lamellar substructure

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Mikromechaniczny model materiałów polikrystalicznych o substrukturze lamelarnej
Języki publikacji
EN
Abstrakty
EN
Micromechanical model of polycrystalline materials with lamellar substructure is presented. The lamellar microstructure of grains is accounted for using the well-established framework developed for layered composites. Within the approach different scale transition rules between the level of lamellar grain and the polycrystalline sample can be employed. The model capabilities are tested using the example of α2 + γ-TiAl intermetallic. Elastic properties and the initial yield surface for the lamellar grain (PST crystal) and for the untextured polycrystal are estimated. Elastic and plastic anisotropy degree is analyzed.
PL
Zaprezentowano model mikromechaniczny materiałów polikrystalicznych o substrukturze lamelarnej. Substruktura laminatu obserwowana dla pojedynczego ziarna została uwzględniona przy wykorzystaniu tradycyjnego podejścia przyjmowanego w przypadku kompozytów warstwowych. W ramach proponowanego podejścia stosowane być mogą różne schematy przejścia mikro-makro z poziomu ziarna o substrukturze laminatu do poziomu polikryształu. Możliwości modelu zostały przetestowane na przykładzie intermetaliku α2 + γ-TiAl. Wyznaczono własności sprężyste i początkową powierzchnię płynięcia pojedynczego kryształu o substrukturze lamelarnej i polikryształu bez tekstury. Przeanalizowano stopień anizotropii własności sprężystych i plastycznych.
Twórcy
  • Polish Academy of Sciences, Institute of Fundamental Technological Research, 02-106 Warszawa, 5B Pawinskiego Str., Poland
Bibliografia
  • [1] F. Appel, R. Wagner, Microstructure and deformation of two-phase γ-titanium aluminides. Mater. Sci. Eng R. 22, 187-268 (1998).
  • [2] J. G. Berryman, Bounds and estimates for elastic constants of random polycrystals of laminates. Int. J. Solids Structures 42, 3730-3743 (2005).
  • [3] R. Brenner, R.A. Lebensohn, O. Castelnau, Elastic anisotropy and yield surface estimates of polycrystals. Int. J. Solids Structures 46, 3018-3026 (2009).
  • [4] W. T. Burzynski, Studium nad hipotezami wytezenia. Lwów, 1928. (także Dzieła Wybrane, t. I, PWN, Warszawa 1982).
  • [5] A. El Omri, A. Fennan, F. Sidoroff, A. Hihi, Elastic-plastic homogenization for layered composites. Eur. J. Mech. A/Solids 19, 585-601 (2000).
  • [6] J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Roy. Soc. A 241, 376-396 (1957).
  • [7] R. Hill, Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13, 89-101 (1965).
  • [8] J. W. Hutchinson, Elastic-plastic behavior of polycrystalline metals and composites. Proc. Roy. Soc. London A319, 247-272 (1970).
  • [9] K. Kishida, H. Inui, M. Yamaguchi, Deformation of PST crystals of a TiAl/Ti3Al two-phase alloy at 1000°C. Intermetallics 7, 1131-1139 (1999).
  • [10] U. F. Kocks, H. Chandra, Slip geometry in partially constrained deformation. Acta Metall. 30, 695 (1982).
  • [11] Y. Koizumi, T. Nakano, Y. Umakoshi, Plastic deformation and fracture behaviour of Ti3Al single crystals deformed at high temperature under cyclic loading. Acta Mater. 47, 2019-2029 (1999).
  • [12] K. Kowalczyk, J. Ostroska-Maciejewska, Energy-based limit conditions for transversally isotropic solids. Arch. Mech. 54(5-6), 497-523 (2002).
  • [13] K. Kowalczyk-Gajewska, Bounds and self-consistent estimates of overall properties for random polycrystals described by linear constitutive laws. Arch. Mech. 61(6), 475-503 (2009).
  • [14] K. Kowalczyk-Gajewska, Micromechanical modelling of metals and alloys of high specific strength, IFTR Reports 1/2011 (2011).
  • [15] K. Kowalczyk-Gajewska, J. Ostrowska-Maciejewska, The influence of internal restrictions on the elastic properties of anisotropic materials. Arch. Mech 56, 205-232 (2004).
  • [16] K. Kowalczyk-Gajewska, J. Ostrowska-Maciejewska, Review on spectral decomposition of Hooke's tensor for all symmetry groups of linear elastic material. Enging. Trans. 57, 145-183 (2009).
  • [17] R. A. Lebensohn, H. Uhlenhut, C. Hartig, H. Mecking, Plastic flow of γ-TiAl-based polysynthetically twinned crystals: micromechanical modelling and experimental validation. Acta Mater. 46, 229-236 (1998).
  • [18] M. Moakher, N. Norris, The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry. J. Elasticity 85, 215-263 (2006).
  • [19] T. Nakano, B. Ogawa, Y. Koizumi, Y. Umakoshi, Plastic deformation behaviour and dislocation structure in Ti3Al single crystals cyclically deforming by prism slip. Acta Mater. 46, 4311-4324 (1998).
  • [20] S. Nemat-Nasser, M. Hori, Micromechanics: overall properties of heterogeneous materials. North-Holland Elsevier, 1999.
  • [21] S. Nikolov, R.A. Lebensohn, D. Raabe, Self-consistent modeling of large plastic deformation, texture and morphology evolution in semi-crystalline polymers. J. Mech. Phys. Solids 54, 1350-1375 (2006).
  • [22] J. Ostrowska-Maciejewska, J. Rychlewski, Generalized proper states for anisotropic elastic materials. Arch. Mech. 53(4-5), 501-518 (2001).
  • [23] V. Paidar, M. Yamaguchi, Constrained deformation of a lamellar structure. Mater. Sci. Engng A 462, 460-464 (2007).
  • [24] H. Petryk, General conditions for uniqueness in materials with multiple mechanisms of inelastic deformation. J. Phys. Mech. Solids 48, 367-396 (2000).
  • [25] A. Roos, J.-L. Chaboche, L. Gelebart, J. Crepin, Multiscale modelling of titanium aluminides. Int. J. Plasticity 20, 811-830 (2004).
  • [26] J. Rychlewski, Zur Abschätzung der Anisotropie. ZAMM 65, 256-258 (1985).
  • [27] J. Rychlewski, Anisotropy degree of elastic materials. Arch. Mech. 41, 697-715 (1989).
  • [28] J. Rychlewski, Unconventional approach to linear elasticity. Arch. Mech. 47(2), 149-171 (1995).
  • [29] J. Rychlewski, A qualitative approach to Hooke's tensors. Part I. Arch. Mech. 52, 737-759 (2000).
  • [30] J. Rychlewski, A qualitative approach to Hooke's tensors. Part II. Arch. Mech. 53, 45-63 (2001).
  • [31] S. Stupkiewicz, H. Petryk, Modelling of laminated microstractures in stress-induced martensitic transformations. J. Phys. Mech. Solids 50, 2303-2331 (2002).
  • [32] S. Stupkiewicz, H. Petryk, A bi-crystal aggregate model of pseudoelastic behaviour of shape-memory alloy polycrystals. Int. J. Mech. Sci. 52, 219-228 (2010).
  • [33] M. S. Szczerba, T. Bajor, T. Tokarski, Is there a critical resolved shear stress for twinning in face-centered cubic crystals? Phil. Mag. 84, 481-502 (2004).
  • [34] K. Tanaka, Single-crystal elastic constants of γ-TiAl. Phil. Mag. Lett. 73, 71-78 (1996).
  • [35] K. Tanaka, K. Okamoto, H. Inui, Y. Minonishi, M. Yamaguchi, M. Koiwa, Elastic constants and their temperature dependence for the intermetallic compound Ti3Al. Phil. Mag. A 73, 1475-1488 (1996).
  • [36] P. Van Houtte, On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory for partially constrained plastic deformation of crystal. Mater. Sci. Eng. 55, 69-77 (1982).
  • [37] P. Van Houtte, L. Delannay, I. Samajdar, Quantitative prediction of cold rolling textures in low carbon steel by means of the LAMEL model. Textures and Microtextures 31, 109-149 (1999).
  • [38] P. Van Houtte, S. Li, M. Seefeldt, L. Delannay, Deformation texture prediction: from the Taylor model to the advanced Lamel model. Int. J. Plasticity 21, 589-624 (2005).
  • [39] L. J. Walpole, Advances in Applied Mechanics, volume 21, chapter Elastic Behavior of Composite Metarials: Theoretical Foundations, pages 169-236 (1981).
  • [40] M. Werwer, A. Cornec, Numerical simulation of plastic deformation and fracture in polysynthetically twinned (PST) crystals of TiAl. Comput. Mater. Sci. 19, 97-107 (2000).
  • [41] M. Werwer, A. Cornec, The role of superdislocations for modeling plastic deformation of lamellar TiAl. Int. J. Plasticity 22, 1683-1698 (2006).
  • [42] M. Werwer, R. Kabir, A. Cornec, K.-H. Schwalbe, Fracture in lamellar TiAl simulated with the cohesive model. Engng. Fracture Mech. 74, 2615-2638 (2007).
  • [43] J. R. Willis, Advances in Applied Mechanics, volume 21, chapter Variational and Related Methods for the Overall Properties of Composites, pages 2-79 (1981).
  • [44] C. Zener, Elasticite et Anelasticite des Metaux. Dunod, Paris, 1955.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0091-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.