PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reconstruction of the boundary condition in the problem of the binary alloy solidification

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Odtworzenie warunku brzegowego w zagadnieniu krzepnięcia stopu dwuskładnikowego
Języki publikacji
EN
Abstrakty
EN
The solution of the inverse problem involving the designation of the boundary condition in the problem of the binary alloy solidification for known temperature measurements at a selected point of the cast is presented. In the discussed model, the temperature distribution is described by means of the Stefan problem with varying in time temperature corresponding to the beginning of solidification and depending on the concentration of the alloy component. Whereas to describe the concentration, the Scheil model was used.
PL
W pracy przedstawiono rozwiązanie zagadnienia odwrotnego polegającego na określeniu warunku brzegowego w zagadnieniu krzepnięcia stopu dwuskładnikowego, gdy znane są pomiary temperatury w wybranym punkcie odlewu. W rozważanym modelu rozkład temperatury opisany został zagadnieniem Stefana ze zmienną w czasie temperaturą odpowiadającą początkowi procesu krzepnięcia, zależną od stężenia składnika stopowego. Do opisu stężenia wykorzystano model Scheila.
Twórcy
autor
  • Institute of Mathematics, Silesian University of Technology, 44-100 Gliwice, 23 Kaszubska Str., Poland
Bibliografia
  • [1] V. Alexiades, A. D. Solomon, Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publ. Corp., Washington 1993.
  • [2] J. Crank, Free and Moving Boundary Problems, Clarendon Press, Oxford 1996.
  • [3] B. Ganapathysubramanian, N. Zabaras, Control of solidification of nonconducting materials using tailored magnetic fields, J. Crystal Growth 276, 299-316 (2005).
  • [4] B. Ganapathysubramanian, N. Zabaras, On the control of solidification using magnetic fields and magnetic field gradients, Int. J. Heat Mass Transfer 48, 4174-4189 (2005).
  • [5] R. Grzymkowski, D. Słota, Numerical method for multi-phase inverse Stefan design problems, Arch. Metall. Mater. 51, 161-172 (2006).
  • [6] R. Grzymkowski, D. Słota, One-phase inverse Stefan problems solved by Adomian decomposition method, Comput. Math. Appl. 51, 33-40 (2006).
  • [7] S. C. Gupta, The Classical Stefan Problem. Basic Concepts, Modelling and Analysis, Elsevier, Amsterdam 2003.
  • [8] M. Hojny, M. Głowacki, The methodology of strain-stress curves determination for steel in semi-solid state, Arch. Metall. Mater. 54, 475-483 (2009).
  • [9] A. Imani, A. A. Ranjbar, M. Esmkhani, Simultaneous estimation of temperature-dependent thermal conductivity and heat capacity based on modified genetic algorithm, Inverse Probl. Sci. Eng. 14, 767-783 (2006).
  • [10] W. Kapturkiewicz, E. Fraś, A. A. Burbelko, Modeling the kinetics of solidification of cast iron with lamellar graphite, Arch. Metall. Mater. 54, 369-380 (2009).
  • [11] E. Majchrzak, B. Mochnacki, Application of the BEM in the thermal theory of foundry, Eng. Anal. Bound. Elem. 16, 99-121 (1995).
  • [12] E. Majchrzak, R. Szopa, Simulation ofheat and mass transferindomain of solidifying binary alloy, Arch. Metallurgy 43, 341-351 (1998).
  • [13] G. H. Meyer, A numerical method for the solidification of a binary alloy, Int. J. Heat Mass Transfer 24, 778-781 (1981).
  • [14] B. Mochnacki, E. Majchrzak, R. Szopa, Simulation of heat and mass transfer in domain of casting made from binary alloy, Arch. Foundry Eng. 8 (4), 121-126 (2008).
  • [15] B. Mochnacki, J. S. Suchy, Numerical Methods in Computations of Foundry Processes, PFTA, Cracow 1995.
  • [16] B. Mochnacki, J. S. Suchy, M. Prażmowski, Modelling of segregation in the process of Al-Si alloy solidification, Soldification of Metals and Alloys 2 (44), 229-234 (2000).
  • [17] K. Okamoto, B. Q. Li, A regularization method for the inverse design of solidification processes with natural convection, Int. J. Heat Mass Transfer 50, 4409-4423 (2007).
  • [18] M. N. Özişik, Heat Conduction, Wiley & Sons, New York 1980.
  • [19] H.-S. Ren, Application of the heat-balance integral to an inverse Stefan problem, Int. J. Therm. Sci. 46, 118-127 (2007).
  • [20] D. Samanta, N. Zabaras, Numerical study of macrosegregation in aluminum alloys solidifying on uneven surfaces, Int. J. Heat Mass Transfer 48, 4541-4556 (2005).
  • [21] D. Samanta, N. Zabaras, Control of macrosegregation during the solidification of alloys using magnetic fields, Int. J. Heat Mass Transfer 49, 4850-4866 (2006).
  • [22] D. Słota, Direct and inverse one-phase Stefan problem solved by variational iteration method, Comput. Math. Appl. 54, 1139-1146 (2007).
  • [23] D. Słota, Solving the inverse Stefan design problem using genetic algorithms, Inverse Probl. Sci. Eng. 16, 829-846 (2008).
  • [24] D. Słota, Using genetic algorithms for the determination of an heat transfer coefficient in three-phase inverse Stefan problem, Int. Comm. Heat & Mass Transf. 35, 149-156 (2008).
  • [25] D. Słota, Identification of the cooling condition in 2-D and 3-D continuous casting processes, Numer. Heat Transfer B 55, 155-176 (2009).
  • [26] D. Słota, The application of the homotopy perturbation method to one-phase inverse Stefan problem, Int. Comm. Heat & Mass Transf. 37, 587-592 (2010).
  • [27] J. S. Suchy, B. Mochnacki, Analysis of segregation process using the broken line model. Theoretical base, Arch. Foundry 3 (10), 229-234 (2003).
  • [28] D. Szeliga, J. Gawęda, M. Pietrzyk, Parameters identification of material models based on the inverse analysis, Int. J. Appl. Math. Comput. Sci. 14, 549-556 (2004).
  • [29] R. Szopa, Modelling of solidification and crystalization using combined boundary element method, Zeszyty Nauk. Pol. śl. Hut. 54 (1999).
  • [30] J. Talar, D. Szeliga, M. Pietrzyk, Application of genetic algorithm for identification of rheological and friction parameters in copper deformation process, Arch. Metallurgy 47, 27-41 (2002).
  • [31] V. R. Voller, Asimilarity solution for solidification of an under-cooled binary alloy, Int. J. Heat Mass Transfer 49, 1981-1985 (2006).
  • [32] V. R. Voller, An enthalpy method for modeling dendritic growth in a binary alloy, Int. J. Heat Mass Transfer 51, 823-834 (2008).
  • [33] G. Z. Yang, N. Zabaras, The adjoint method for an inverse design problem in the directional solidification of binary alloys, J. Comput. Phys. 140, 432-452 (1998).
  • [34] G. Z. Yang, N. Zabaras, An adjoint method for the inverse design of solidification processes with natural convection, Int. J. Numer. Methods Engrg. 42, 1121-1144 (1998).
  • [35] N. Zabaras, G. Z. Yang, A functional optimization formulation and implementation of the inverse natural convection problem, Comput. Methods Appl. Mech. Engrg. 144, 245-274 (1997).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0091-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.