Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An iterative method for time optimal control of a general type of dynamic systems is proposed, subject to limited control inputs. This method uses the indirect solution of open-loop optimal control problem. The necessary conditions for optimality are derived from Pontryagin's minimum principle and the obtained equations lead to a nonlinear two point boundary value problem (TPBVP). Since there are many difficulties in finding the switching points and in solving the resulted TPBVP, a simple iterative method based on solving the minimum energy solution is proposed. The method does not need finding the switching point so that the resulted TPBVP can be solved by usual algorithms such as shooting and collocation. Also, since the solution of TPBVPs is sensitive to initial guess, a short procedure for making the proper initial guess is introduced. To this end, the accuracy and efficiency of the proposed method is demonstrated using time optimal solution of some systems: harmonic oscillator, robotic arm, double spring-mass problem with coulomb friction and F-8 aircraft.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
5--23
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
autor
autor
- Mechanical Engineering Department, Babol University of Technology, Babol, Iran
Bibliografia
- [1] M. DIEHL, H. G. BOCK, H. DIEDAM and P.-B. WIEBER: Fast direct multiple shooting algorithms for optimal robot control. In M. Diehl and K. Mombaur: Fast motions in biomechanics and robotics optimization and feedback control. SpringerVerlag, Berlin/Heidelberg, 2007, 65-93.
- [2] JR. J. E. COCHRAN and R. DAL: Wavelet collocation method for optimal control problems. J. Optimization Theory and Applications, 143 (2009), 265-278.
- [3] B. J. DRIESSEN and N. SADEGH: Minimum-time control of systems with Coulomb friction: near global optima via mixed integer linear programming. Optimal Control Applications and Methods, 22 (2001), 51-62.
- [4] T. SINGH and P. SINGLA: Sequential linear programming for design of time- optimal controllers. 46th IEEE Conference on Decision and Control, New Orleans, LA, (2007), 4755-4760.
- [5] G. NAKHAIE JAZAR and A. NAGHSHINEH-POUR: Floating time algorithm for time optimal control of multi-body dynamic systems. Proc. of the IMechE, Part K: J. of Multi-Body Dynamics, 219 (2005), 225-236.
- [6] K. ITO and K. KUNISCH: Semismooth Newton methods for time optimal control for a class of ODES. SIAM J. on Control and Optimization, 48(6) (2010), 3997- 4013.
- [7] J. BEN-ASHER, J.A. BURNS and E. M. CLIFF: Time optimal slewing of flexible spacecraft. J. of Guidance, Control, and Dynamics, 15(2) (1992), 360-367.
- [8] G. SINGH, P. T. KABAMBA and N. H. MCCLAMROCH: Planar, time optimal, restto-rest slewing maneuvers of flexible spacecraft. J. of Guidance, Control, and Dynamics, 12(1) (1989), 71-81.
- [9] L. Y. PAO: Minimum time control characteristics of flexible structures. J. of Guidance, Control, and Dynamics, 19(1) ( I 996), 123-129.
- [10] A. ALBASSAM: Optimal near minimum time control design for flexible structures. J. Guidance, Control, and Dynamics, 25(4) (2002), 618-625.
- [11] H. P. GEERING, L. GUZZELLA, S. A. R. HEPNER and C. H. ONDER: Time optimal motions of robots in assembly tasks. IEEE Trans. on Automatic Control, AC-31(6) (1986), 512-518.
- [12] L. G. V. WILLIGENBURG and R. P. H. LOOP: Computation of time optimal controls applied to rigid manipulators with friction. Int. J. of Control, 54(5) (1991), 1097- 1117.
- [13] R. FOTOUHI and W. SZYSZKOWSKI: An algorithm for time optimal control problems. J. of Dynamic Systems, Measurement, and Control, 120 (1998), 414-418.
- [14] R. FOTOUHI and W. SZYSZKOWSKI: Improving time optimal maneuvers of two link robotic manipulators. J. of Guidance, Control, and Dynamics, 23(5) (2000), 888-889.
- [15] J. E. BOBROW, S. DUBOWSKY and J. S. GIBSON: Time optimal control of robotic manipulators along specified paths. The Int. J. of Robotics Research, 4(3) (1985), 3-17.
- [16] M. H. GHASEMI and M. J. SADIGH: A direct algorithm to compute the switching curve for time optimal motion of cooperative multi manipulators moving on a specified path. Advanced Robotics, 22 (2008), 493-506.
- [17] J. MATTMOLLER and D. GISLER: Calculating a near time optimal jerk constrained trajectory along a specified smooth path. Int. J. of Advanced Manufacturing Technology, 45 (2009), 1007-1016.
- [18] E. B. MEIER and A. E. BRYSON: Efficient algorithm for time optimal control of a two link manipulator. J. of Guidance, Control, and Dynamics, 13(5) (1990), 859- 866.
- [19] C. Y. KAYA and J. L. NOAKES: Computational method for time optimal switching control. J. of Optimization Theory and Applications, 117(1) (2003), 69-92.
- [20] C. Y. KAYA and J. L. NOAKES: Computations and time optimal controls. Optimal Control Applications and Methods, 17 (1996), 171-185.
- [21] H. W. J. LEE, L. S. JENNINGS, K. L. TEO and V. REHBOCK: Control parameterization enhancing technique for time optimal control problems. Dynamic Systems and Applications, 6 (1997), 243-262.
- [22] C. H. HUANG and C. H. TSENG: A two phase computational scheme for solving bang-bang control problems. Optimization and Engineering, 7 (2006), 445-458.
- [23] L. XIE and K. KUNISCH: Numerical methods for time optimal control problems.43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, (2005).
- [24] M. H. KORAYEM and A. NIKOOBIN: Maximum payload path planning for redundant manipulator using indirect solution of optimal control problem. Int. J. of Advanced Manufacturing Technology, 44 (2009), 725-736.
- [25] L. S. PONTRYAGIN, V. G. BOLTYANSKII, R. V. GAMKRELIDZE and E. F. MISHCHENKO: The mathematical theory of optimal processes. Gordon and Beach, New York, NY, 1986.
- [26] D. E. KIRK: Optimal control theory: an introduction. Dover Publications, New York, NY, 1998.
- [27] D. S. NAIDU: Optimal control systems. CRC Press, New York, NY, 2002.
- [28] N. HALE and L. N. TREFETHEN: New quadrature methods from conformal maps. SIAM J. on Numerical Analysis, 46 (2008), 930-948.
- [29] W. L. GARRARD and J. M. JORDAN: Design of nonlinear automatic control systems. Automatica 13 (1977), 497-505.
- [30] A. A. DESROCHERS and R. Y. AL-JAAR: A case for nonlinear model simplification in the design of flight control systems. American Control Conf., San Francisco, CA, USA, (1983), 788-793.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0081-0001