PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phenomenological Description of the Effect of Micro-Shear Banding in Micromechanical Modelling of Polycrystal Plasticity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Fenomenologiczny opis efektu mikropasm ścinania w mikromechanicznym modelowaniu plastyczności polikryształów
Języki publikacji
EN
Abstrakty
EN
The rigid-plastic crystal plasticity model accounting for the effect of micro-shear banding mechanism on the reduction of the global strain hardening rate is presented. The instantaneous contribution of micro-shear bands in the rate of plastic deformation is described by means of the constitutive function fMS that depends on the type of strain path specified by the current direction of strain rate tensor. The capabilities of the model are explored by studying the strain-stress behavior of polycrystalline material together with the crystallographic texture evolution in the polycrystalline element.
PL
Przedstawiono sztywno-plastyczny model plastyczności kryształów uwzględniający wpływ mikropasm ścinania na redukcje globalnego modułu umocnienia. Chwilowy udział mikro-pasm ścinania w prędkości deformacji plastycznej został opisany poprzez dodatkowa konstytutywna funkcje fMS, która zależy od schematu odkształcenia zdefiniowanego przez aktualny kierunek tensora prędkości odkształceń. Zbadano możliwości proponowanego modelu mikromechanicznego w ramach analizy odpowiedzi materiału polikrystalicznego z uwzględnieniem rozwoju tekstury krystalograficznej.
Twórcy
  • Institute of Fundamental Technological Rsearch of the Polish Academy of Sciences, 02-106 Warszawa, 5b Pawinskiego Str., Poland
Bibliografia
  • [1] F. Adcock, The internal mechanism of cold-work and recrystallization in Cupro-Nickel. J. Institute of Metals 27, 73–92 (1922).
  • [2] L. Anand, Single-crystal elasto-viscoplasticity: application to texture evolution in polycrystalline metals AT large strain. Comput. Methods Appl. Mech. Engrg. 193, 5359–5383 (2004).
  • [3] L. Anand, S. R. Kalidindi, The process of shear band formation in plane strain compression of fcc metals: Effects of crystallographic texture. Mech. Mater. 17, 223–243 (1994).
  • [4] L. Anand, M. Kothari, A computational procedure for rate independent crystal plasticity. J. Mech. Phys. Solids 44 (4), 525–558 (1996).
  • [5] R. J. Asaro, Crystal plasticity. J. Applied Mechanics 50, 921–934 (1983).
  • [6] R. J. Asaro, A. Needleman, Textured development and strain hardening in rate dependent polycrystals. Acta metall. 33 (6), 923–953 (1985).
  • [7] E. P. Busso, G. Cailletaud, On the selection of active slip systems in crystal plasticity. Int. J. Plasticity 21, 2212–2231 (2005).
  • [8] J. L. F. Coffin, The stability of metals under cyclic plastic strain. J. Basic Eng. 82D, 671–682 (1960).
  • [9] Y. F. Dafalias, The plastic spin concept and a simple illustration of its role in finite plastic transformations. Mech. Mater. bf 3, 223–233 (1984).
  • [10] S. D. Dugdale, Stress-strain cycles of large amplitude. J. Mech. Phys. Solids 7, 135–142 (1959).
  • [11] B. J. Duggan, M. Hatherly, W. B. Hutchinson, P. T. Wakefield, Deformation structures and textures in cold-rolled 70:30 brass. Metal. Sci. 12, 343–351 (1978).
  • [12] J. D. Embury, A. Korbel, V. S. Raghunathan, J. Rys, Shear band formation in colled rolled Cu-65%Al single crystals. Acta Metall. 32, 1883–1894 (1984).
  • [13] W. Gambin, Crystal plasticity based on yield surface with rounded-off corners. ZAMM 71 (4), T265–T268 (1991).
  • [14] S. V. Harren, H. E. Deve, R. J. Asaro, Shear band formation in plain strain compression. Acta Metall. 36, 2435–2480 (1988).
  • [15] M. Hatherly, A. S. Malin, Shear band in deformed metals. Scripta Metall. 18, 449–454 (1984).
  • [16] S. R. Kalidindi, L. Anand, Macroscopic shape change and evolution of crystallographic texture In pre-textured fcc metals. J. Mech. Phys. Solids 42, 459–490 (1994).
  • [17] L. X. Kong, L. Lin, P. D. Hodgson, Material properties under drawing and extrusion with cyclic torsion. Mater. Sci. Engng. A A308, 209–215 (2001).
  • [18] A. Korbel, W. Bochniak, Refinement and control of metals structure elements by plastic deformation. Scripta Metar. 51, 755–759 (2004).
  • [19] A. Korbel, J. D. Embury, M. Hatherly, P. L. Martin, H. W. Erbsloh, Microstructural aspects of strain localization in Al-Mg alloys. Acta Metall. 34, 1999–2009 (1986).
  • [20] A. Korbel, P. L. Martin, Microstructural events of macroscopic strain localization in prestrain tensile specimens. Acta Metall. 36, 2575 (1988).
  • [21] K. Kowalczyk, W. Gambin, Model of plastik anisotropy evolution with texture-dependent yield surface. Int. J. Plasticity 20, 19–54 (2004).
  • [22] K. Kowalczyk-Gajewska, W. Gambin, R. B. Pecherski, J. Ostrowska-Maciejewska, Modelling of crystallographic texture development in metals accounting for micro-shear banding. Arch. Metall. Mater. 50, 575– 593 (2005).
  • [23] K. Kowalczyk-Gajewska, Z. Mróz, R. B. Pecherski, Micromechanical modelling of polycrystalline materials under non-proportional deformation paths. Arch. Metall. Mater. 52, 181–192 (2007).
  • [24] A. A. S. Mohammed, E. A. El-Danaf, A. A. Radwan, A criterion for shear banding localization in polycrystalline fcc metals and alloys and critical working conditions for different microstructural variables. J. Mater. Proc. Technol. 186, 14-21 (2007).
  • [25] Z. Mróz, K. Kowalczyk-Gajewska, J. Maciejewski, R. B. Pecherski, Tensile or compressive plastic deformation assisted by cyclic torsion. Arch. Mech. 58, 497–527 (2006).
  • [26] Z. Mróz, R. B. Pecherski, Metal forming processes conditioned by cyclic loading. a new challenge for the theory of plasticity. In: Kowalewski, T., Gutkowski, W. (Eds.), Proc. ICTAM 2004. Springer.
  • [27] H. Paul, J. H. Driver, C. Maurice, Z. Jasienski, Shear band microtexture formation In twinned face centered cubic single crystals. Mater. Sci. Eng. A 359, 178–191 (2003).
  • [28] H. Paul, Z. Jasienski, A. Piatkowski, A. Litwora, A. Pawelek, Crystallographic nature of shear bands in polycrystalline copper. Arch. Metall. 41, 337–353 (1996).
  • [29] R. B. Pecherski, Modelling of large plastic deformation based on the mechanism of micro-shear banding. Physical foundations and theoretical description in plane strain. Arch. Mech. 44, 563–584 (1992).
  • [30] R. B. Pecherski, Macroscopic measure of the rate deformation produced by micro-shear banding. Arch. Mech. 49, 385-401 (1997).
  • [31] R. B. Pecherski, Continuum mechanics description of plastic flow produced by micro-shear banding. Technische Mechanik 18, 563–584 (1998a).
  • [32] R. B. Pecherski, Macroscopic effects of microshear banding in plasticity of metals. Acta Mechanica 131, 203–224 (1998b).
  • [33] J. G. Sevillano, P. van Houtte, E. Aernoudt, Large strain work hardening and textures. Progress in Material Science 25, 69–412 (1981).
  • [34] F. Stalony-Dobrzanski, W. Bochniak, Role of shear bands in forming the texture image of deformed copper alloy. Arch. Metall. Mater. 50, 1089-1102 (2005).
  • [35] W. Y. Yeung, B. J. Duggan, On the plastic strain carried by shear bands in cold-rolled brass. Scripta Metall. 21, 485–490 (1987).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0074-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.