PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On generalization of integral control to a class of nonlinear uncertain systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns a new view on the problem of integral control in the context of nonlinear uncertain systems. It is demonstrated that a standard integral action applied to the linear control system with so-called load disturbances, can be generalized to comprise a class of linearly parameterized nonlinear SISO systems with functional uncertainty. In this case the integral action is turned out to be in fact an adaptation law of unknown parameters. It has been found that the obtained proportional-integral controller's variable gains are the basis functions of the system unknown nonlinearity approximator.
Rocznik
Strony
187--198
Opis fizyczny
Bibliogr. 11 poz., rys., wzory
Twórcy
  • Institute of Mathematics Physics and Chemistry, Faculty of Marine Engineering, Marine University of Szczecin, Wałly Chrobrego, Szczecin, Poland
Bibliografia
  • [1] S. FABRI and S.V. KADRIKAMANATHAN: Functional adaptive control. An intelligent systems approach. Springer-Verlag, London, 2001.
  • [2] J. FARRELL and M. POLYCARPOU: Adaptive approximation based contro., John Wiley, Hoboken, NJ, 2006.
  • [3] A. ISIDORI: Nonlinear control systems. An introduction. Springer -Verlag, Berlin, 1989.
  • [4] H. K. KHALIL: Universal integral controllers for minimum-phase nonlinear systems. IEEE Trans. on Automatic Control, 45(3), (2000), 490-494.
  • [5] S. SASTRY and A. ISIDORI: Adaptive control of linearizable systems. IEEE Trans. on Automatic Control, 34(11), (1989), 1123-1131.
  • [6] J. E. SLOTINE and W. LI: Applied nonlinear control. Prentice Hall, New Jersey, 1991.
  • [7] E. TZIRKEL-HANCOCK and F. FALLSIDE: Stable control of nonlinear systems using neural networks. Int. J. of Robust and Nonlinear Control, 2 (1992), 63-86.
  • [8] J. ZABCZYK: Mathematical control theory: An introduction. Birkhäuser, Boston, 1992.
  • [9] Z. ZWIERZEWICZ: Some aspects of LQR control via an example of ship trajectory tracker design. Optimal Control. Sonderforschungs-bereich, Technische Universitat Munchen, 255 (2002), 167-177.
  • [10] Z. ZWIERZEWICZ: Nonlinear adaptive tracking-control synthesis for general linearly parametrized systems. In: Automation and Robotics, (Ed. Juan Manuel Ramos Arreguin), Vienna, (2008), 375-388.
  • [11] Z. ZWIERZEWICZ: Nonlinear adaptive tracking-control synthesis for functionally uncertain systems. Int. J. of Adaptive Control and Signal Processing, DOI: 10.1002/acs.1114, (2009), (in print). Reachability of linear hybrid systems described by the general model @cytowania=15
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0073-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.