PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear response of a harmonically driven oscillator in magnetic field

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents analysis of nonlinear response of a classical mechanical oscillator placed within a magnetic field and driven by a harmonic force. With an appropriate choice of control parameters, the system vibrates chaotically between different equilibrium positions. To prove this result, Lyapunov exponents have been calculated using the algorithm proposed by Rangarajan G., Habib S. and Ryne R.: Physical Review Letters, vol. 80, (1998). Moreover, the appropriate time series, phase portrait, Poincar'e cross-section and power spectrum are given to support the conclusion.
Słowa kluczowe
Rocznik
Strony
19--30
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
Bibliografia
  • [1] J. AWREJCEWICZ and L. P. DZYUBAK: Quantifying smooth and nonsmooth regular and chaotic dynamics. Int. J. of BilUrcation and Chaos, 15(6), (2005), 2041-2055.
  • [2] J. AWREJCEWICZ and L. P. DZYUBAK: Influence of hysteretic dissipation on chaotic responses. J. of Sound and Vibration, 284 (2005), 513-519.
  • [3] J. AWREJCEWICZ and R. MOSDORF: Numerical analisis of chosen chaotic dynamical problems. WNT, Warsaw, 2003, (in Polish).
  • [4] G. BERTOTTI: Hysteresis in magnetism. Academic Press, San Diego, 1998.
  • [5] G. BIORCI and D. PESCETTI: Analytical theory of the behavior of ferromagnetic materials. 11 Nuovo Chnento, 7(6), (1958).
  • [6] M. BOROWIEC, G. LITAK and A. SYTA: Vibration of the duffing oscillator: Effect of fractional damping. Shock and Vibration, 14 (2007), 29-36.
  • [7] S. L. T. DE SOUZA, I. L. CALDAS, R. L. VIANA, J. M. BALTHAZAR and R.M.L.R.F. BRASIL: A simple feedback control for a chaotic oscillator with limited power supply. J. of Sound and Vibration, 299 (2007), 664-671.
  • [8] S. L. T. DE SOUZA, I. L. CALDAS, R. L. VIANA, I. M. BALTHAZAR: Control and chaos for vibro-impact and non-ideal oscillators. J. of Theoretical and Applied Mechanics, 46(3), (2008), 641-664.
  • [9] K. DZIEDZIC: Dynamic of rotors with active magnetic damping in bearings. PhD thesis , Warsaw University of Technology, 2005, (in Polish).
  • [10] H. GAN: Noise-induced chaos in duffing oscillator with double wells. Nonlinear Dynamics, 45 (2006), 305-317.
  • [11] H. HEIN and O. LEPIK: Response of nonlinear oscillators with random frequency of excitation, revisited. J. of Sound and Vibration, 301 (2007), 1040-1049.
  • [12] J. I. INAYAT-HUSSAIN: Chaos via torus breakdownin the vibration response of a rigid rotor supported by active magnetic hearings. Chaos, Solitons and Fractals,31 (2007), 912-927.
  • [13] L. IIN, Q.-S. Lu and E.H. TWIZZEL: A metod for calculating the spectrum of Lyapunov exponents by local maps in non-smooth impact vibrating systems. J. Of Sound and Vibration, 298 (2006), 1019-1033.
  • [14] H. E. KNOEPFEL: Magnetic Fields. John Wiley & Sons, Inc., 2000.
  • [15] E. OTT: Chaos in dynamical systems. WNT, Warsaw, 1997, (in Polish).
  • [16] P. M. PRZYBYLOWICZ and T. SZMIDT: Magnetic damping of harmonic oscillator vibration. Modelowanie Inynierskie, 35 (2008), 101-106, (in Polish).
  • [17] P. M. PRZYBYLOWICZ and T. SZMIDT: Electromagnetic damping of a mechanical harmonic oscillator with the effect of magnetic hysteresis. J. of Theoretical and Applied Mechanics, 47(2), (2009), 259-273.
  • [18] G. RANGARAJAN, S. HABIB and R. RYNE: Lyapunov exponents without resealing and reorthogonalization. Physical Review Letters. 80 (1998), 3747-3750.
  • [19] M. SIEWE SIEWE, F.M. MOUKAM KAKMENI, C. TCHAWOUA and P. WOAFO: Bifurcations and chaos in the triple-well (13 6 -Van der Pol oscillator driven by external and parametric excitations. Physica A, 357 (2005), 383-396.
  • [20] A. WOLF, J. B. SWIFT, H.L. SWINNEY and J.A. VASTANO: Determining Lyapunov exponents from a time series. Physica D, 16 (1985), 285-317.
  • [21] G. YANG, J. Lu and A.C.J. Luo: On the computation of Lyapunov exponents for forced vibration of a Lennard-Jones oscillator. Chaos, Solitons and Fractals, 23 (2005), 833-841.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0064-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.