PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stochastic robust flight control under windshear by reduced-order anisotropic controller

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to design of stochastic robust anisotropy-based reduced-order controller for longitudinal flight control in landing approach under the influence of both deterministic and stochastic external disturbances. The control aims at disturbance attenuation and stabilizing aircraft longitudinal motion along some desired glidepath. The controller design procedure consists of two steps. At first, the full-order optimal controller is obtained as the solution to normalized anisotropy-based stochastic Η∞ optimization problem. Then, the optimal controller is reduced via a truncation-like technique. The results of comparison of reduced-order anisotropic controller with LQG and Η∞ ones on the base of closed-loop system simulation are presented.
Rocznik
Strony
385--422
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
Bibliografia
  • [1] A. P. Kurdyukov, B. V. Pavlov, V. N. Timin and I. G. Vladimirov: Longi-tudinal anisotropy-based flight control in a wind shear. Proc. 16th IFAC Symp. on Automatic Control in Aerospace, Saint-Petersburg, Russia, I (2004), 430-433.
  • [2] A. P. KURDYUKOV and M. M. TCHAIKOVSKY: Longitudinal robust anisotropic optimal flight control in a windshear. Proc. 17th IFAC Symp. on Automatic Control in Aerospace, Toulouse, France, (2007).
  • [3] I. G. Vladimirov, A. P. Kurdjukov and A. V. Semyonov: On computing the anisotropic norm of linear discrete-time-invariant systems. Proc. I3th IFAC World Congress. San-Francisco, CA, (1996), 179-184.
  • [4] I. G. Vladimirov, A.P. Kurdjukov and A.V. Semyonov: State-space solution to anisotropy-based stochastic H...-optimization problem. Proc. of 13th IFAC World Congress, San-Francisco, CA, (1996), 427-432.
  • [5] P. Diamond, I.G. Vladimirov, A.P. Kurdyukov and A.V. Semyonov: Anisotropy-based performance analysis of linear discrete time-invariant control systems. Int. J. of Control, 74 (2001), 28-42.
  • [6] M. M. TCHAIKOVSKY and A.P. Kurdyukov: On computing anisotropic norm of linear discrete-time-invariant system via LMI-based approach. Archives of Control Sciences, 16(3), (2006), 257-281.
  • [7] A. E. Jonckhere and L.M. SlLVERMAN: A new set of invariants for linear systems - Application to reduced order compensator design. IEEE Trans, on Automatic Control, 28 (1983), 953-964.
  • [8] D. Mustafa and K. Glover: Controller reduction by H...-balanced truncation. IEEE Trans, on Automatic Control, 36 (1991), 668-682.
  • [9] R. S. LlPTSER and A.N. SHIRYAEV: Statistics of random processes. Springer-Yerlag, New-York, 1977.
  • [10] P. DORATO and A.H. LEVIS: Optimal linear regulators: The discrete-time case. IEEE Trans, on Automatic Control, AC-16 (1971), 613-620.
  • [11] B. P. MOLINARI: The stabilizing solution of the discrete algebraic Riccati Equa-tion. IEEE Trans, on Automatic Control, AC-20 (1975), 396-399.
  • [12] A. P. Kurdyukov, E. A. Maximov, and M. M. Tchaikovsky: Homotopy method for solving anisotropy-based stochastic H-optimization problem with uncertainty. Proc. 5th IEAC Symp. on Robust Control Design, Toulouse, France (2006).
  • [13] M. M. TCHAlKOVSKY and A. P. KURDYUKOV: On simplifying solution to nor-malized anisotropy-based stochastic H problem. Proc. 6th IEAC Symp. on Robust Control Design, Haifa, Israel (2009), 161-166.
  • [14] D. S. Bernstein: Matrix mathematics: Theory, facts, and formulas with application to linear systems theory. Princeton University Press, Princeton, NJ, 2005.
  • [15] H. K. WlMMER: Monotonicity and maximality of solutions of discrete-time algebraic Riccati eąuations. J. Math. Systems Estimat. Control. 2 (1992), 219-235.
  • [16] D. J. Clements and H. K. Wimmer: Monotonicity of the optimal cost in the discrete-time regulator problem and Schur complements. Automatica, 37 (2001), 1779-1786.
  • [17] B. N. DATTA: Numerical methods for linear control systems design and analysis. Elseveir Academic Press, San Diego, CA, 2004.
  • [18] M. IVAN: A ring vortex downburst model for flight simulation. J. Aircraft 23(3), (1996).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0061-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.