PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Uboczne produkty dezynfekcji wody

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Drinking water disinfection by-products
Języki publikacji
PL
Abstrakty
PL
W niniejszej pracy omówiono problem ubocznych produktów dezynfekcji wody. Źródłem większości organicznych produktów ubocznych jest naturalna materia organiczna. Nieorganiczne produkty uboczne dezynfekcji ograniczają się w zasadzie do bromianów, chloranów i chlorynów. Najbardziej znane są uboczne produkty chlorowania wody a szczególnie związki lotne i o umiarkowanej polarności. Praca podkreśla jednak wagę właściwej dezynfekcji wody i jej mikrobiologicznego bezpieczeństwa. W artykule wskazano na fakt naszej niepełnej wiedzy o produktach ubocznych zarówno chlorowania, ozonowania jak i stosowania dwutlenku chloru w technologii uzdatniania wody. Podkreślono także wpływ wiedzy dotyczącej generowania ubocznych produktów dezynfekcji na zmiany, jakie dokonały się w technologiach uzdatniania wody w ciągu ostatnich 30 lat.
EN
The paper reviews the problem of drinking water disinfection by-products. The natural organic matter is the main source of the organic by-products. Inorganic disinfection by-products are limited to bromates, chlorites and chlorates. Chlorinated compounds, particularly volatile and relatively nonpolar compounds belong to the most known by-products. The paper however emphasizes the importance of the proper disinfection of drinking water as well as its microbiological safety of water. The paper points out our still insufficient knowledge on the disinfection by-products in relation to all: chlorination, ozonation as well as application of ClO2. The review indicates also how the knowledge on the formation of disinfection by-products has influenced water treatment technologies for last 30 years.
Czasopismo
Rocznik
Tom
Strony
3--8
Opis fizyczny
Bibliogr. 53 poz., rys.
Twórcy
autor
  • Zakład Technologii Uzdatniania Wody, Wydział Chemii, Uniwersytet im. A. Mickiewicza, Poznań
Bibliografia
  • 1. J. J. Rook, „Formation of haloforms during chlorination of natural waters". Water Treat. Exam. 23, 234 (1974).
  • 2. T. A. Beliar, J. J. Lichtenberg, R. C. Kroner, „The occurrence of organohalides in chlorinated drinking water". Journal AWWA 66, 703 (1974).
  • 3. Guidelines for Drinking-Water Quality, Third Edition, Vol. 1, Recommendations, World Health Organization, Geneva, 2004.
  • 4. S. Regli and others, „Proposed decision tree for management of risk in drinking water: consideration for health and socioeconomic factors". In: „Safety of water disinfection: balancing chemical and microbial risk", Cram G. F. ed., ILSI Press, Washington, DC (1993).
  • 5. X. Xu, T M. Mariano, J. D. Laskin, C. P. Weisel, „Percutaneous absorption of trihalomethanes, haloacetic acids, and haloketones" Toxicol. Appl. Pharmacol. 184 (1), 19 (2002).
  • 6. X. Xu, C. P Weisel, „Human respiratory uptake of chloroform and haloketones during showering" J. Exposure Anal. Env. Epidem. 15, 6-16 (2005).
  • 7. A. M. Miles and others, „Comparison of Trihalomethanes in Tap Water and Blood", Env. Sci. Technol. 36, 1692 (2002).
  • 8. H. Guo and others, „Risk assessment of exposure to volatile organic compounds in different indoor environments", Env. Res., 94 (1), 57 (2004).
  • 9. B. Levesque and others, „Cancer risk associated with household exposure to chloroform", J. Tox. Env. Health - Part A, 65 (7), 489. (2002).
  • 10. L. C. Backer and others, „Household exposures to drinking water disinfection by-products: Whole blood trihalomethane levels", J. Exp. Anal. Env. Epidemiology, 10 (4), 321. (2000).
  • 11. H.-W Kuo and others, „Estimates of cancer risk from chloroform exposure during showering in Taiwan" Sci. Total Env. 218, 1 (1998).
  • 12. S. W Krasner, J. M. Wright, „The effect of boiling water on disinfection by-product exposure", Water Res. 39, 855 (2005).
  • 13. S. D. Richardson, „Disinfection by-products and other emerging contaminants in drinking water", Tr. Anal. Chem. 22 (10), 666 (2003).
  • 14. J. M. Wright and others, „3-Chloro-4- (dichloromethyl) -5-hydroxy-2 (5H) -furanone (MX) and mutagenic activity in Massachusetts drinking water" Env. Health Perspect. 110 (2), 157 (2002).
  • 15. A. Smeds and others, „Concentrations of Ames mutagenic chlorohydroksyfuranones and related compounds in drinking waters", Env. Sci. Technol. 31 (4), 1033 (1997).
  • 16. T Myllykangas and others, „Bromide affecting drinking water mutagenicity", Chemosphere 53, 745 (2003).
  • 17. H. Komulainen and others, „Carcinogenicity of the drinking water mutagen 3-chloro-4- (clichloromethyl) -5-hydroxy-2 (5H) -furanone in the rat" J. Nat. Cancer Inst. 89, 848-856, (1997).
  • 18. H. S. Weinberg and others, „The Occurrence Disinfection By-Products (DBPs) of Health Concern in Drinking Water: Results of Nationwide DBP Occurence Study, EPA/600/R02/068; US Environmental Protection Agency, National Exposure Research Laboratory, Athens, Ga, 2002.
  • 19. A. I. Egorov and others, „Exposures to drinking water chlorination by-products in a Russian city", International J. Hyg. Env. Health, 206 (6), 539 (2003)
  • 20. J. Nawrocki, S. Bilozor, „Brominated oxidation by-products in drinking water treatment", J. Water SRT - Aqua 46, 304 (1997).
  • 21. U. von Gunten, „Ozonation of drinking water - Part 2. Disinfection and by-product formation in presence of bromide, iodide and chlorine", Water Research 37, 1469 (2003).
  • 22. S. D Richardson and others, „Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramine and chlorine" Water, Air Soil Pollut. 123, 95 (2000).
  • 23. S. D Richardson and others, „Tribromopyrrole, brominated acids, and other disinfection by-products produced by disinfection of drinking water rich in bromide" Env. Sci. Technol. 37, 3782 (2003).
  • 24. A. A. Kampioti, E. G. Stephanou, The impact of bromide on the formation of neutral and acidic disinfection by-products (DBPs) in Mediterranean chlorinated drinking water" Water Res. 36, 2596 (2002).
  • 25. M. J. Plewa and others, „Chemical and biological characterization of newly discovered iodoacid drinking water disinfection by-products", Env. Sci. Technol., 38 (18), 4713 (2004).
  • 26. X. Zhang, R. A. Minear, „Decomposition of trihaloacetic acids and formation of the corresponding trihalomethanes in drinking water", Water Res. 36, 3665 (2002).
  • 27. J. Schumacher, Y Z. Pi, M. Jekel „Ozonation of Persistent DOC in Municipal WWTP Effluent for Groundwater Recharge", Water Sci. Technol., 49 (4), 305 (2004).
  • 28. Schittko S., Putschew A., Jekel M., „Bank filtration: A suitable process for the removal of iodinated x-ray contrast media?", Water Sci.Technol., 50 (5), 261 (2004).
  • 29. S. Andersen, B. S. B. Petersen, P Laurberg, „Iodine in drinking water in Denmark is bound in humic substances", Europ. J. Endocrinol., 147 (5), 663 (2002).
  • 30. M. Soylak and others, „Iodine levels of drinking water samples collected from Kayseri-Turkey", Fres. Env. Bull., 10 (6), 595 (2001).
  • 31. B. Cancho and others, „Determination, synthesis and survey of iodinated trihalomethanes in water treatment processes", Water Res., 34 (13), 3380 (2000).
  • 32. W. A. Mitch, D. L. Sedlak. „A N-Nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater". Water Res., 37, 3733 (2003)
  • 33. J. Choi, R. L. Valentine, „Formation of N-Nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product", Water Res., 36, 817 (2002).
  • 34. W. A. Mitch, D. L. Sedlak. „Formation of Nnitrosodimethylamine (NDMA) from Dimethylamine during Chlorination", Env. Sci. Technol., 36, 588 (2002).
  • 35. A. C. Gerecke, D. L. Sedlak; „Precursors of N-Nitrosodimethylamine in Natural Waters" Env.. Sci. Technol. 37, 1331 (2003).
  • 36. A. Raksit, S. Johri, „Determination of N-nitrosodimethylamine in environmental aqueous samples by isotope-dilution GC/MS-SIM" Journal-AOAC Int. 84 (5), 1413 (2001).
  • 37. L. Cardenes and others, „Determination of N-nitrosamines by HPTLC with fluorescence detection - Use of non-ionic surfactants as enhancing agents" J. Planar Chromatogr.- Mod TLC 15 (5), 349 (2002).
  • 38. W. A. Mitch and others, „N-Nitrosodimethylamine (NDMA) as a Drinking Water Contaminant: A Review", Env. Eng. Sci. 20 (5), 389 (2003).
  • 39. P. Andrzejewski i in.; „Potencjał tworzenia i analityka nitrozoamin - nowych ubocznych produktów chlorowania" VI Międzynarodowa Konferencja Naukowo-Techniczna „Zaopatrzenie w wodę, jakość i ochrona wod", Poznań, 6-8.09.2004, Materiały Konferencyjne, Tom II, str. 95-106.
  • 40. P. Andrzejewski, B. Kasprzyk-Hordern and J. Nawrocki „The hazard of N-Nitrosodimethylamine (NDMA) formation during water disinfection with strong oxidants" Desalination 176, 37-45 (2005).
  • 41. H. Weinberg, Disinfection By-products in Drinking Water: The Analytical Chalenge, Anal. Chem. 71, 801A (1999).
  • 42. E. T Urbansky, M. L. Magnuson, „Analyzing Drinking Water for Disinfection By-products", Anal. Chem. 74 (9), 260A (2002).
  • 43. X. Zhang, R. A. Minear, S. E. Barret, „Characterization of high molecular weight disinfection by-products from chlorination of humic substances with/without coagulation pretreatment using UF-SEC-ESI-MS/MS" Env. Sci. Technol. 39 (4), 963 (2005).
  • 44. X. Zhang and others, An electro-spray ionization-tandem mass spectrometry method for identifying chlorinated drinking water disinfection by-products" Water Res. 38, 3920 (2004).
  • 45. X. Zhang, R. A. Minear, „Characterization of high molecular weight disinfection by-products resulting from chlorination of aquatic humic substances" Env. Sci. Technol. 36 (19), 4033 (2002).
  • 46. These, A., Reemtsma, T Structure-dependent reactivity of low molecular weight fulvic acid molecules during ozonation Env. Sci. Technol. 39 (21), 8382 (2005).
  • 47. Guidelines for Drinking-Water Quality, Third Edition, Vol. 1, Recommendations, World Health Organization, Geneva, 1993.
  • 48. A. Dąbrowska, J. Świetlik, and J. Nawrocki, „Formation of aldehydes upon C102 disinfection", Water Res., 37 (5), 1161 (2003).
  • 49. C. Collivignarelli, S. Sorlini, „Trihalomethane, chlorite and bromate formation in drinking water oxidation of Italian surface waters", J. Water Supply, Res. & Technol. - AQUA 53 (3), 159 (2004).
  • 50. S. D. Richardson, A. D. Thurston Jr., T. W. Collette, K. S. Patterson, B. W Lykins Jr., G. Majetich, Y Zhang, „Multispectral identificationof chlorine dioxide disinfection by-products in drinking water", Env. Sci. Technol. 28, 592 (1994).
  • 51. Raczyk-Stanistawiak U. i in. Biodegrability of organic by-products after natural organic master oxidation with C10 2 - case study. Water Res. 2004, 38 1044-1054.
  • 52. Ivancev-Tumbas I. and Dalmacija B. (2001) Effects of coagulation processes on aldehydes formation in groundwater treated with common oxidative agents. Water Res. 35 (16), 3950-3958.
  • 53. J. Nawrocki, Uboczne produkty utleniania i dezynfekcji wody - doświadczenia ostatnich 30 lat. Ochrona Środowiska 3, 3-12 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0053-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.