PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of electric arc furnace process at Deutsche Edelstahlwerke

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Optymalizacja procesu EAF w Deutsche Edelstahlwerke
Konferencja
European Electric Steelmaking Conference (9; 19-21.05.2008; Krakow, Poland)
Języki publikacji
EN
Abstrakty
EN
During stainless steel production in the electric arc furnace (EAF), oxygen is injected to oxidize unwanted tramp elements, mainly carbon and silicon. Unfortunately, oxygen also oxidizes precious elements such as iron and chromium which causes economical loss and bad environmental impact. Off-gas analysis was performed at Deutsche Edelstahlwerke (DEW) to control the decarburization so that the elements, not only carbon, oxidation and oxygen consumption can be controlled as well. This paper presents a new strategy to control the elements oxidation as well as to increase the oxygen efficiency. For the investigated heat, the well controlled decarburization will decrease the oxygen consumption by about 10%. Work was carried out with a financial grant from the Research Fund for Coal and Steel of the European Community.
PL
Podczas produkcji stali nierdzewnej w elektrycznym piecu łukowym (EAF), tlen jest wdmuchiwany do utlenienia zbędnych domieszek, głównie węgla i krzemu. Niestety tlen również utlenia pożądane składniki jak żelazo i chrom, co powoduje straty ekonomiczne i ma szkodliwy wpływ na środowisko. W Deutsche Edelstahlwerke (DEW) została wykonana analiza gazów wylotowych do sterowania odwęglaniem, również kontrolowane może być utlenianie i zużycie tlenu. W artykule przedstawiono nową strategię kontroli utlenianych składników, w celu zwiększenia wydajności tlenu. Dla badanego nagrzewania, dobrze kontrolowane odwęglanie może zmniejszyć zużycie tlenu o około 10%. Praca została sfinansowana i przeprowadzona w ramach grantu Research Fund for Coal and Steel of the European Community.
Twórcy
autor
autor
autor
autor
  • INSTITUTE FOR INDUSTRIAL FURNACES AND HEAT ENGINEERING, RWTH AACHEN UNIVERSITY, GERMANY
Bibliografia
  • [1] N. Anacleto, O. Ostrovski, S. Ganguly, Carbon solubility and phase composition of silicomanganese, steel research 77, 4, 227-233 (2006).
  • [2] S. Arnout, F. Verhaeghe, B. Blanpain, P. Wollants, R. Hendickx, G. Heylen, A thermodynamic model of the EAF process for stainless steel, steel research, 77, 5, 317-323 (2006).
  • [3] M. Barati, K.-S. Coley, A comprehensive kinetic model for the CO-CO2reaction with iron oxide-containing slags, metallurgical and materials transactions B, 37B, 61-69 (2006).
  • [4] J.-G. Bekker, Modelling and control of an electric arc furnace off-gas process, Master thesis, University of Pretoria, Faculty of Mechanical Engineering, 1998.
  • [5] B. Deo, R. Boom, Fundamentals of steelmaking metallurgy, Prentice Hall International, 1993.
  • [6] Eurofer: The greenhouse gas challenge: How the EU steel industry competitiveness could be affected, position paper, January 2005.
  • [7] R.-F. Fruehan, The making, shaping and treating of steel: steelmaking and refining volume, 11thedition, The AISE Steel Foundation, Pittsburgh, 1998.
  • [8] International iron and steel institute (IISI): World steel in figures 2007, September 2007.
  • [9] Y. Kato, H. Okuda, Reaction model for carbon, manganese and oxygen in bottom blowing with mixed gas in final stage of steel refining in converter, ISIJ international, 43, 11, 1710-1714 (2003).
  • [10] M. Kirschen, R. Kuhn, S. Lenz, J. Loh, H. Pfeifer, K. Schaefers, F. Wahlers, Off-gas measurements at primary dedusting system of electric arc furnace, stahl und eisen, 124, 11, 73-89 (2004).
  • [11] M. Kirschen, H. Pfeifer, F. Wahlers, H. Mees, Off-gas measurements for mass and energy balances of stainless steel EAF, Proc. of 59th Electric Furnace Conference, Arizona, USA, Nov. 11-14 2001, 737-745.
  • [12] Z. Ma, D. Janke, Thermodynamic assessment to chromium oxidation in the production of stainless steel, steel research, 74, 2, 99-103 (2003).
  • [13] F. Oeters, Metallurgy of steelmaking, Verlag Stahleisen mbH, Dusseldorf, 1994.
  • [14] H. Ono-Nakazato, Y. Morita, K. Tamura, T. Usui, K. Marukawa, Oxidation behaviour of silicon and carbon in molten iron-carbon-silicon alloys with carbon dioxide, ISIJ international, 41 Supplement, S 61-S65 (2001).
  • [15] H. Pfeifer, M. Kirschen, Thermodynamic analysis of EAF energy efficiency and comparison with a statistical model of electric energy demand, Proc. of 7th European Electric Steelmaking Conference, Venice, Italy, May 26-29, 1413-1428 (2002).
  • [16] L.-P. Rathaba, Model fitting for electric arc furnace refining. Master thesis. University of Pretoria, Faculty of Mechanical Engineering, 2004.
  • [17] V. Risonarta, L. Voj, M. Kirschen, C. Beiler, B. Elezi, H. Pfeifer, Reduction of CO2 emissions and optimization of EAF energy input, Proc. of 35th McMaster University Iron and Steelmaking Symposium, Hamilton, Canada, June 5-7 2007.
  • [18] K. Tang, V. Olso, O. Sverre, Manganese and silicon activities in liquid carbon-saturatedMn-Si-alloys, steel research, 73, 3, 77-81 (2002).
  • [19] L. Voj, Installation of a permanent off-gas measurement for process control of a 140-t EAF, Diploma thesis, Institute for Industrial Furnaces and Heat Engineering in Metallurgy, RWTH Aachen University, August 2002.
  • [20] F.-J. Wahlers, K.-H. Schubert, C. Burkat, S. Kohle, C. Bendel, Observation and control of AOD process with exhaust gas measurement, Proc. of Electric Furnace Conference, Orlando, 893-903 USA, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0044-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.