PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the quasi optimal distribution of PZTs in active reduction of the triangular plate vibration

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Active reduction of transverse vibration of the triangular plate is considered. The C-F-F boundary conditions are imposed. The plate is excited with harmonic acoustic wave. Since it is unsymmetrical boundary problem, the places of bonded PZTs are not obvious. To solve the problem it is based on an idea, that PZTs should be attached at points in which the curvatures of the surface locally take their maximum (quasi-optimal places). Numerical experiments are performed to confirm the validity of the idea. The bending moment and shearing force at the clamped side are calculated for two cases. First case when PZTs are attached at quasi-optimal places and second one, when PZTs are somewhat shifted. The numerical calculations show that better results are obtained at the first case. It confirms the validity of the idea of quasi-optimal distribution of PZTs on the triangular plate surface in the vibration reduction problem.
Rocznik
Strony
427--437
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
autor
  • Laboratory of Acoustic, Technical University of Rzeszow, Rzeszow, Poland
Bibliografia
  • [1] M. PIETRZAKOWSKI: Active damping of transverse vibration using distributed piezoelectric elements. Warszawa, Oficyna Wydawnicza Politechniki Warszawskiej, 2004.
  • [2] A. TYLIKOWSKI: Control of circular plate vibrations via piezoelectric actuators shunted with a capacitive circuit. Thin-Walled Structures, 39 (2001), 83-94.
  • [3] C. R. FULLER, S. J. ELLIOT and P. A. NELSON: Active control of vibration. London, Academic Press, 1997.
  • [4] C. H. HANSEN and S. D. SNYDER: Active control of noise and vibration. London, E&FN SPON, 1997.
  • [5] W. KARUNASENA, S. KITIPORNCHAI and F. G. A. AL.-BERMANI: Free vibration of cantilevered arbitrary triangular Mindlin plates. Int. J. Mech. Sci., 38(4), (1996), 431-442.
  • [6] S. MIRZA and Y. ALIZADEH: Free vibration of partially supported triangular plates. Computers & Structures, 51(2), (1994), 143-150.
  • [7] R. SINGHAL and D. REDEKOP: Vibration of right-angled triangular plates partially clamped on one side. J. Sound and Vibration, 251(2), (2002), 377-382.
  • [8] T. SAKIYAMA and H. HUANG: Free-vibration analysis of right triangular plates with variable thickness. J. Sound and Vibration, 234(5), (2000), 841-858.
  • [9] S. W. KANG and J. M. LEE: Free vibration analysis of arbitrarily shaped plates with clamped edges using wave-type functions. J. Sound and Vibration, 242(1), (2001), 9-26.
  • [10] A. W. LEISSA: Vibration of plates. Washington, NASA SP-160, D.C.: Office of Technology Utilization, NASA, 1969.
  • [11] S. P. TIMOSHENKO and S. WOINOWSKY-KRIEGER: Theory of plates and shells. New York, McGraw-Hill, 1959.
  • [12] S. E. BURKE and J. E. HUBBARD: Distributed transducer vibration control of thin plates. J. of the Acoustical Society of America, 90 (1991), 937-944.
  • [13] J. M. SULLIVAN, J. E. HUBBARD and S. E. BURKE: Modeling approach for twodimensional distributed transducers of arbitrary spatial distribution. J. of the Acoustical Society of America, 99(5), (1996), 2965-2974.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0042-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.