PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reachability and controllability to zero of cone fractional linear systems

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new class of cone fractional linear discrete-time systems is introduced. Necessary and sufficient conditions for the reachability and controllability to zero of the cone fractional systems are established.
Rocznik
Strony
357--367
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • Bialystok Technical University, Faculty of Electrical Engineering, Bialystok, Poland
Bibliografia
  • [1] N. ENGHETA: On the role of fractional calculus in electromagnetic theory. IEEE Trans. Atenn. Prop., 39(4), 1997, 35-46.
  • [2] L. FARINA and S. RINALDI: Positive linear systems. Theory and applications. J. Wiley, New York, 2000.
  • [3] N. M. F. FERREIRA and J. A. T. MACHADO: Fractional-order hybrid control of robotic manipulators. Proc. I I th Int. Conf Advanced Robotics, Coimbra, Portugal, (2003), 393-398.
  • [4] K. GAŁKOWSKI: Fractional polynomials and nD systems. Proc IEEE Mt. Symp. Circuits and Systems, Kobe, Japan, (2005), CD-ROM.
  • [5] T. KACZOREK: Positive ID and 2D systems. Springer-Verlag, London, 2002.
  • [6] T. KACZOREK: Computation of realizations of discrete-time cone systems. Bull. Pol. Acad. Sci. Techn., 54(3), (2006), 347-350.
  • [7] T. KACZOREK: Reachability and controllability to zero tests for standard and positive fractional discrete-time systems. JESA Journal, submitted, 2007.
  • [8] T. KACZOREK: Reachability and controllability to zero of positive fractional discrete-time systems. Machine Intelligence and Robotic Control, 6(4), (2007).
  • [9] T. KACZOREK: Cone-realizations for multivariable continuous-me systems with delays. Proc. 5th Workshop of the IIGSS, Wuhan, China, (2007).
  • [10] K. S. MILLER and B. ROSS: An Introduction to the fractional calculus and fractional differenctial equations. Willey, New York 1993.
  • [11] M. MOSHREFI-TORBATI and K. HAMMOND: Physical and geometrical interpretation of fractional operators. J. Franklin Inst. 335B(6), (1998), 1077-1086.
  • [12] K. NISHIMOTO: Fractional calculus. Koriama: Decartess Press, 1984.
  • [13] K. B. OLDHAM and J. SPANIER: The fractional calculus. New York: Academmic Press, 1974.
  • [14] M. D. ORTIGUEIRA: Fractional discrete-time linear systems. Proc. IEE-ICASSP 97, Munich, Germany, 3, (1997), 2241-2244.
  • [15] P. OSTALCZYK: The non-integer difference of the discrete-time function and its application to the control system synthesis. Mt. J. Syst, Sci. 31(12), (2000), 1551-1561.
  • [16] P. OSTALCZYK: Fractional-order backward difference equivalent forms. Part I -Horner’s form. Proc. 1-st IFAC Workshop Fractional Differentation and its Applications,Enseirb, Bordeaux, France, (2004), 342-347.
  • [17] P. OSTALCZYK: Fractional-order backward difference equivalent forms. Part II -Polynomial form. Proc. 1st IFAC Workshop Fractional Differentation and its Applications, Enseirb, Bordeaux, France, (2004), 348-353.
  • [18] A. OUSTALUP: Commande CRONE. Paris, Hermes, 1993.
  • [19] A. OUSTALUP: La derivation non entiere. Paris: Hermes, 1995.
  • [20] I. PODLUBNY: Fractional differential equations. San Diego: Academic Press, 1999.
  • [21] I. PODLUBNY: Geometric and physical interpretation of fractional integration and fractional differentation. Fract. Calc. Appl. Anal. 5(4), (2002), 367-386.
  • [22] I. PODLUBNY, L. DORCAK and I. KOSTIAL: On fractional derivatives, fractional order systems and PIxDP-controllers. Proc. 36th IEEE Conf. Decision and Control, San Diego, CA, (1997), 4985-4990.
  • [23] M. E. REYES-MELO, J. J. MARTINEZ-VEGA, C. A. GUERRERO-SALAZAR and U. ORTIZ-MENDEZ: Modelling and relaxation phenomena in organic dielectric materials. Application of differential and integral operators of fractional order. J. Optoel. Adv. Mat., 6(3), (2004), 1037-1043.
  • [24] D. RIU, N. RETIERE and M. IVANES: Turbine generator modeling by non-integer order systems. Proc. IEEE Mt. Electric Machines and Drives Conf., Cambridge, MA, (2001), 185-187.
  • [25] S. G. SAMKO, A. A. KILBAS and O. I. MARTICHEW: Fractional integrals and derivative. Theory and Applications. London, Gordon&Breac, 1993.
  • [26] D. SIEROCIUK and D. DZIELIŃSKI: Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comp. Sci., 16(1), (2006), 129-140.
  • [27] M. SJÖBERG and L. KARI: Non-linear behavior of a rubber isolator system using fractional derivatives. Vehicle Syst. Dynam., 37(3), (2002), 217-236.
  • [28] B. M. VINAGRE, C. A. MONJE and A.J. CALDERON: Fractional order systems and fractional order control actions. Lecture 3 IEEE CDC'02 TW#2: Fractional calculus Applications in Autiomatic Control and Robotics.
  • [29] B. M. VINAGRE and V. FELIU: Modeling and control of dynamic system using fractional calculus: Application to electrochemical processes and flexible structures. Proc. 41st IEEE Coq Decision and Control, Las Vegas, NV, (2002), 214-239.
  • [30] V. ZABOROWSKY and R. MEYLAOV: Informational network traffic model based on fractional calculus. Proc. Int. Conf. Info-tech and Info-net, Beijing, China, 1 (2001), 58-63.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0042-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.