PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

General adaptive observer-based fuzzy control of uncertain nonaffine systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on the construction of an adaptive fuzzy output feedback control based on any adaptive fuzzy observer for a class of single-input-single-output SISO uncertain or ill-defined nonaffine nonlinear system. Indeed, the corrective term of the proposed observer involves a well defined design function which is shown to be satisfied by the commonly used high-gain based observers, namely for the usual high-gain observers and the sliding modes observers together with their implementable versions. The design of the underlying update law as well as the robust control term is based on an appropriate filtering of the output tracking error. This particularly allows to overcome yhe output observation error flitering or the necessity of the famous strictly positive real (SPR) condition.
Rocznik
Strony
383--410
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
autor
autor
autor
Bibliografia
  • [1] T. C. LIN, C. H. WANG and H. L. LIU: Observer-based indirect adaptive fuzzyneural tracking control for nonlinear SISO systems using VSS and H? approaches. Fuzzy Sets and Systems, 143 (2004), 211-232.
  • [2] L. X. WANG: Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Systems, 1 (1993), 146-155.
  • [3] C. Y. SUE and Y. STEPANENKO: Adaptive control of a class of nonlinear systems with fuzzy logic. IEEE Trans. Fuzzy Systems, 2(4), (1994), 285-294.
  • [4] J. T. SPOONER and K. V. PASSINO: Stable adaptive control using fuzzy systems and neural networks. IEEE Trans. Fuzzy Systems, 4(3), (1996), 339-359.
  • [5] V. GAZI and K. V. PASSINO: Direct adaptive control using dynamic structure fuzzy systems. Proc. American Control Conf., (2000), 1954-1958.
  • [6] B. S. CHEN, C.H. LEE and Y.C. CHANG: tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach. IEEE Trans. Fuzzy Systems, 4(1), (1996), 32-43.
  • [7] Y. C. CHANG: Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and approaches. IEEE Trans. Fuzzy Systems, 9 (2001), 278-292.
  • [8] Y. C. CHANG: Robust tracking control for nonlinear MIMO systems via fuzzy approaches. Automatica, 36 (2000), 1535-1545.
  • [9] J. H. PARK and S. H. KIM: Direct adaptive output feedback fuzzy controller for a non affine of nonlinear systems. IEE Proc. Control. Theory Appl., 151(1), (2004), 65-72.
  • [10] J. H. PARK, G. T. PARK, S. H. KIM and C. J. MOON: Output feedback control of uncertain nonlinear systems using a self-structuring adaptive fuzzy observer. Fuzzy Sets and Systems, 151 (2005), 21-42.
  • [11] H. X. LI and S. TONG: A hybrid fuzzy adaptive control for a class of nonlinear MIMO systems. IEEE Trans. Fuzzy Systems, 11(1), (2003), 24-34.
  • [12] A. HAMZAOUI, N. ESSOUNBOULI, K. BENMAHAMMED and J. ZAYTOON: State observer based robust adaptive fuzzy controller for nonlinear uncertain and perturbed systems. IEEE Trans. Systems, Man, and Cybernetics - Part B: Cybernetics, (2004), 1-9.
  • [13] W. Y. WANG, Y. GLEU and T. T LEE: Output-feedback control of nonlinear systems using direct adaptive fuzzy-neural controller. Fuzzy Sets and Systems, 140 (2003), 341-358.
  • [14] S. TONG, H. X. LI and W. WANG: Observer-based adaptive fuzzy control for SISO nonlinear systems. Fuzzy Sets and Systems, 148 (2004), 355-376.
  • [15] S. TONG, H. X. LI and G. CHEN: Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems. IEEE Trans. Systems, Man, and Cybernetics -Part B: Cybernetics, 34(1), (2004), 770-775.
  • [16] Y. G. LEU, T. T. LEE and W. Y. WANG: Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems. IEEE Trans. Systems, Man Cybernet. Part B: Cybernetics, 29 (1999), 583-591.
  • [17] S. TONG and H. X. LI: Fuzzy adaptive Sliding-mode control for MIMO nonlinear systems. IEEE Trans. Fuzzy Systems, 11(3), (2003), 354-360.
  • [18] S. TONG and H. X. LI: Direct adaptive fuzzy output tracking control of nonlinear systems. Fuzzy Sets and Systems, 128 (2002), 107-115.
  • [19] Y. TANG, J. WANG, S. GU and F. QI: Fuzzy adaptive output feedback control for nonlinear MIMO systems based on observer. Proc. 5th World Congress on Intelligent Control and Automation, (2004), 506-510.
  • [20] M. POLYCARPOU: Stable adaptive neural control scheme for nonlinear systems. IEEE Trans. Automatic Control, 41(3), (1996), 447-451.
  • [21] F. L. LIU, M. SEKHER, M. FARZA and M. M’SAAD: Nonlinear observers design for state and unknowns inputs. Proc. Third Int. Conf. on SSD, (2005).
  • [22] B. TARGUI, M. FARZA and H. HAMMOURI: Constant-gain observer for a class of Multi-output nonlinear systems. Applied Mathematics Letters, 15 (2002), 709-720.
  • [23] L. X. WANG and J. M. MENDEL: Fuzzy basis functions, universal approximation, and orthogonal least square learning. IEEE Trans. Neural Networks, 3(5), (1992), 807-814.
  • [24] S. SESHAGIRI and H. K. KHALIL: Output feedback control of nonlinear systems using RBF neural networks. IEEE Trans. Neural Network, 11(1), (2000), 69-79.
  • [25] A. FILIPESCU, L. DUGARD and J.-M. DION: Adaptive gain sliding mode observer based sliding controller for uncertain parameters nonlinear systems: application to flexible joint robots. Proc. 42nd IEEE Conf. on Decision and Control, (2003), 3537-3542.
  • [26] L. X. WANG: Adaptive fuzzy systems and control: design and stability analysis. Prentice-Hall, Englewood Cliffs, NJ, 1994.
  • [27] P. A. IOANNOU and J. SUN: Robust adaptive control. Prentice-Hall, Englewood Cliffs, NJ, 1996.
  • [28] J. H. PARK and G.-T. PARK: Adaptive fuzzy observer with minimal dynamic order for uncertain nonlinear systems. IEE Proc. Control .Theory Appl., 150(2), (2003), 189-197.
  • [29] H. KHALIL: Nonlinear systems. Prentice-Hall, London, 1996.
  • [30] H. K. YOUNG, L. L. LEWIS and T. A. CHAOUKI: A dynamic recurrent neuralnetwork-based adaptive observer for a class of nonlinear systems. Automatica, 33(8), (2003), 1539-1543.
  • [31] Y.-G. LEU, W.-Y. WANG and T.-T. LEE: Observer-based direct adaptive fuzzyneural control for nonaffine nonlinear systems. IEEE Trans. Neural Networks, 16(4), (2005), 853-861.
  • [32] S. S. GE, C. C. HANG and T. ZHANG: Adaptive neural networks control of nonlinear systems by state and output feedback. IEEE Trans. Systems, Man, and Cybernetics - Part B: Cybernetics, 29(6), (1999), 818-828.
  • [33] S. S. GE and J. ZHANG: Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback. IEEE Trans. Neural Networks, 14(4), (2003), 900-918.
  • [34] J. H. PARK, S. H. HUH, S. H. KIM, S. J. SEO and G. T. PARK: Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks. IEEE Trans. on Neural networks, 16(2), (2005), 414-422.
  • [35] J. Y. PARK and G. T. PARK: Robust adaptive fuzzy controller for nonaffine nonlinear systems with dynamic rules activation. Int. J. Robust Nonlinear Control, 13(2), (2003), 117-139.
  • [36] S. S. GE and C. ZHANG: Adaptive NN control of uncertain nonlinear purefeedback systems. Automatica, 38(4), (2002), 1365-1372.
  • [37] T. ZHANG and M. GUAY: Adaptive control for a class of second-order nonlinear systems with unknown input nonlinearities. IEEE Trans on Syst., Man, Cybernetics. Part B: Cybernetics, 33(1), (2003), 143-149.
  • [38] J. D. BOSKOVIC, L. CHEN and R. MEHRA: Adaptive tracking control of a class of nonaffine plants using dynamic feedback. Proc. IEEE American Control Conf, 43, (2001), 2450-2455.
  • [39] H. DU, H. SHAO and P. YAO: Adaptive neural network control for a class of low-triangular-structured nonlinear systems. IEEE Trans. Neural Networks, 17(2), (2006), 509-514.
  • [40] N. HOVAKIMYAN, A.J. CAUSE and N. KIM: Adaptive output feedback control of a class of multi-input multi-ouput systems using neural networks. Int. J. Control, 77(15), (2004), 1318-1329.
  • [41] L. JIANG and Q. H. WU: Nonlinear adaptive control via sliding-mode state and perturbation observer. 1EE Proc. Control Theory Appl., 149(4), (2002), 269-277.
  • [42] L. JIANG, Q.H. WU and J.Y WEN: Decentralized nonlinear adaptive control for multimachine power systems via high-gain perturbation observer. IEEE Trans. Circuits and Systems-I, 51(10), (2004), 2052-2059.
  • [43] A. J. CALISE, N. HOVAKIMYAN and M. IDAN: Adaptive output feedback control of nonlinear systems using neural networks. Automatica, 37(8), (2001), 1201-1211.
  • [44] C. C. KING and T. H. CHEN: Observer-based indirect adaptive fuzzy sliding mode control with state variable filters for unknown nonlinear dynamical systems. Fuzzy Sets and Systems, 155 (2005), 292-308.
  • [45] J. P. BARBOT, T. BOUKHOBZA and M. DJEMAI: Sliding mode observer for triangular input form based. Proc. 35th IEEE Conf on Decision and Control, (1996), 1489-1490.
  • [46] Y. J. CAO: A nonlinear adaptive approach to controlling chaotic oscillators. Physics Letters A, 270 (2000), 171-176.
  • [47] P. C. P. CHAO, C. K. SUNG, C. L. HUANG and J. S. HUANG: Precision repositioning of the balancing ball in an auto-balancer system via a fuzzy speed regulator equipped with a sliding-mode observer. IEEE Trans. Control Systems Technology, 13(6), (2005), 1107-1118.
  • [48] Y. XIONG and M. SAIF: Sliding mode observer for nonlinear uncertain systems. IEEE Trans. Automatic Control, 46(12), (2001), 2012-2017.
  • [49] L. JIANG, Q. H. WU, C. ZHANG and X. X. ZHOU: Observer-based nonlinear control of synchronous generators with perturbation estimation. Electric Power and Energy Systems, 23 (2001), 359-367.
  • [50] N. HOVAKIMYAN, F. NARDI and A. J. CALISE: A novel error observer based adaptive output feedback approach for control of uncertain systems. IEEE Trans. Autom. Control, 47(8), (2002), 1310-1314.
  • [51] S. PURWAR, I. N. KAR and A .N. JHA: Adaptive control of robot manipulators using fuzzy logic systems under actuator constraints. Fuzzy Sets and Systems, 152(3), (2005), 651-664.
  • [52] E. ZERGEROGLU, W. DIXON, D. HASTE and D. DAWSON: A composite adaptive output feedback tracking controller for robotic manipulators. Robotica, 17 (1999), 591-600.
  • [53] M. FARZA and M. M’SAAD: Observer design for a class of MIMO nonlinear systems. Automatica, 40 (2004), 135-143.
  • [54] A. XU and Q. ZHANG: Nonlinear system fault diagnostic based on adaptive estimation. Automatica, 40 (2004), 1181-1193.
  • [55] J. P. GAUTHIER, H. HAMMOURI and S. OTHMAN: A simple observer for nonlinear systems, applications to bioreactors. IEEE Trans. Automatic Control, 37(6), (1992), 875-880.
  • [56] P. A. IOANNOU and P. V. KOKOTOVIC: Instability analysis and improvement of robustness of adaptive control. Automatica, 20(5), (1984), 583-594.
  • [57] K.-M. KOO: Stable adaptive fuzzy controller with time-varying dead-zone. Fuzzy Sets and Systems, 121 (2001), 161-168.
  • [58] K. S. NARENDRA and M. A. ANNASWAMY: A new adaptive law for robust adaptive control without persistent excitation. IEEE Trans. Automatic Control, 32 (1987), 134-145.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW3-0031-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.